第四章 解析函数的幂级数表示方法第一节 级数和序列的基本性质 1、复数项级数和复数序列: 复数序列就是:111222,,...,,...n n n z a ib z a ib z a ib =+=+=+在这里,n z 是复数,,Im ,Re n n n n b z a z ==一般简单记为}{n z 。
按照|}{|n z 是有界或无界序列,我们也称}{n z 为有界或无界序列。
设0z 是一个复常数。
如果任给0ε>,可以找到一个正数N ,使得当n>N 时ε<-||0z z n ,那么我们说{}n z 收敛或有极限0z ,或者说{}n z 是收敛序列,并且收敛于0z ,记作0lim z z n n =+∞→。
如果序列{}n z 不收敛,则称{}n z 发散,或者说它是发散序列。
令0z a ib =+,其中a 和b 是实数。
由不等式0||||||||||n n n n n a a b b z z a a b b --≤-≤-+-及容易看出,0lim z z n n =+∞→等价于下列两极限式:,lim ,lim b b a a n n n n ==+∞→+∞→因此,有下面的注解:注1、序列{}n z 收敛(于0z )的必要与充分条件是:序列{}n a 收敛(于a )以及序列{}n b 收敛(于b )。
注2、复数序列也可以解释为复平面上的点列,于是点列{}n z 收敛于0z ,或者说有极限点0z 的定义用几何语言可以叙述为:任给0z 的一个邻域,相应地可以找到一个正整数N ,使得当n N >时,n z在这个邻域内。
注3、利用两个实数序列的相应的结果,我们可以证明,两个收敛复数序列的和、差、积、商仍收敛,并且其极限是相应极限的和、差积、商。
定义4.1复数项级数就是12......n z z z ++++或记为1n n z +∞=∑,或n z ∑,其中n z 是复数。
定义其部分和序列为:12...n n z z z σ=+++如果序列{}n σ收敛,那么我们说级数n z ∑收敛;如果{}n σ的极限是σ,那么说n z ∑的和是σ,或者说n z ∑收敛于σ,记作1nn zσ+∞==∑,如果序列{}n σ发散,那么我们说级数n z ∑发散。
注1、对于一个复数序列{}n z ,我们可以作一个复数项级数如下121321()()...()...n n z z z z z z z -+-+-++-+则序列{}n z 的敛散性和此级数的敛散性相同。
注2级数nz∑收敛于σ的N ε-定义可以叙述为:0,0,,N n N ε∀>∃>>使得当时有1||nk k z σε=-<∑,注3如果级数n z ∑收敛,那么1lim lim ()0,n n n n n z σσ+→+∞→+∞=-=注4令Re ,Re ,Im ,Re ,Im n n n n n n a z a z b z a b σσ=====,我们有 11n nn k k k k a i b σ===+∑∑因此,级数n z ∑收敛于σ的充分与必要条件是:级数n a ∑收敛于a 以及级数n b ∑收敛于b 。
注5关于实数项级数的一些基本结果,可以不加改变地推广到复数项级数,例如下面的柯西收敛原理:定理4.2柯西收敛原理(复数项级数):级数n z ∑收敛必要与充分条件是:任给0ε>,可以找到一个正整数N ,使得当n>N ,p=1,2,3,…时,12|...|n n n p z z z ε++++++<柯西收敛原理(复数序列):序列{}n z 收敛必要与充分条件是:任给0ε>,可以找到一个正整数N ,使得当m 及n>N ,||n m z z ε-<对于复数项级数n z ∑,我们也引入绝对收敛的概念: 定义4.2如果级数12||||...||...n z z z ++++收敛,我们称级数n z ∑绝对收敛。
非绝对收敛的收敛级数称为条件收敛复级数n z ∑收敛的一个充分条件为级数n z ∑收敛注1、级数n z ∑绝对收敛必要与充分条件是:级数n a ∑以及n b ∑绝对收敛:事实上,有11111||||||||||,nn n nkk nk k k k k nk k k k ab z a b ======≤=≤+∑∑∑∑∑及注2、若级数n z ∑绝对收敛,则n z ∑一定收敛。
例4.1当||1α<时,21......n ααα+++++绝对收敛;并且有12111...,lim 01n nn n αααααα++→+∞-++++==-我们有,当||1α<时,211.......1n αααα+++++=-定理4.1如果复数项级数'n z ∑及"n z ∑绝对收敛,并且它们的和分别为',"αα,那么级数'"'"'"12111(...)n n n n z z z z z z +∞-=+++∑ 也绝对收敛,并且它的和为'"αα。
2、复变函数项级数和复变函数序列:定义4.3 设{()}(1,2,...)n f z n =在复平面点集E 上有定义,那么:...)(...)()(21++++z f z f z f n是定义在点集E 上的复函数项级数,记为1()n n f z +∞=∑,或()n f z ∑。
设函数f(z)在E 上有定义,如果在E 上每一点z ,级数()n f z ∑都收敛于()f z ,那么我们说此复函数项级数在E 上收敛于()f z ,或者此级数在E 上有和函数()f z ,记作),()(1z f z fn n=∑+∞=设),...(),...,(),(21z f z f z f n是E 上的复函数列,记作+∞=1)}({n n z f 或)}({z f n 。
设函数)(z ϕ在E 上有定义,如果在E 上每一点z ,序列)}({z f n 都收敛于)(z ϕ,那么我们说此复函数序列在E 上收敛于)(z ϕ,或者此序列在E 上有极限函数)(z ϕ,记作),()(lim z z f n n ϕ=+∞→注1、复变函数项级数∑)(z f n 收敛于()f z 的N -ε定义可以叙述为:有时使得当,,0,0N n N >>∃>∀ε.|)()(|1ε<-∑=z f z f nk k注2、复变函数序列)}({z f n 收敛于)(z ϕ的N -ε定义可以叙述为:有时使得当,,0,0N n N >>∃>∀ε.|)()(|εϕ<-z z f n定义4.4如果任给0>ε,可以找到一个只与ε有关,而与z 无关的正整数()N N ε=,使得当E z N n ∈>,时,有.|)()(|1ε<-∑=z f z f nk k或 .|)()(|εϕ<-z z f n那么我们说级数∑)(z f n 或序列)}({z f n 在E 上一致收敛于()f z 或)(z ϕ。
注解1、和实变函数项级数和序列一样,我们也有相应的柯西一致收敛原理:定理4.5柯西一致收敛原理(复函数项级数):复函数项级数∑)(z f n 在E 上一致收敛必要与充分条件是:任给0>ε,可以找到一个只与ε有关,而与z 无关的正整数)(εN N =,使得当E z N n ∈>,,p =1,2,3,…时,有.|)(...)()(|21ε<++++++z f z f z f p n n n柯西一致收敛原理(复函数序列):复变函数序列)}({z f n 在E 上一致收敛必要与充分条件是:任给0>ε,可以找到一个只与ε有关,而与z 无关的正整数)(εN N =,使得当E z N n m ∈>,,时,有.|)()(|ε<-z f z f m n注2、一致收敛的魏尔斯特拉斯判别法(优级数准则):设,...)2,1)}(({=n z f n 在复平面点集E 上有定义,并且设是一个收敛的正项级数。
设在E 上,,...),2,1( |)(|=≤n a z f n n那么级数∑)(z f n 在E 上绝对收敛且一致收敛。
这样的正项级数1n n a ∞=∑称为复函数项级数∑)(z f n 的优级数.定理 4.6 设复平面点集E 表示区域、闭区域或简单曲线。
设,...)2,1)}(({=n z f n 在集E 上连续,并且级数∑)(z f n 或序列)}({z f n 在E 上一致收敛于()f z 或)(z ϕ,那么f (z )或)(z ϕ在E 上连续。
定理4.7 设,...)2,1)((=n z f n 在简单曲线C 上连续,并且级数∑)(z f n 或序列)}({z f n 在C 上一致收敛于()f z 或)(z ϕ,那么......21++++n a a a,)()(1⎰∑⎰=+∞=Cn Cn dz z f dz z f或.)()(⎰⎰=CCn dz z dz z f ϕ注1、在研究复函数项级数和序列的逐项求导的问题时,我们一般考虑解析函数项级数和序列;注2、我们主要用莫勒拉定理及柯西公式来研究和函数与极限函数的解析性及其导数。
定义4.5设函数,...)2,1)}(({=n z f n 在复平面C 上的区域D 内解析。
如果级数∑)(z f n 或序列)}({z f n 在D 内任一有界闭区域(或在一个紧集)上一致收敛于()f z 或)(z ϕ,那么我们说此级数或序列在D 中内闭(或内紧)一致收敛于()f z 或)(z ϕ。
定理4.9(魏尔斯特拉斯定理)设函数,...)2,1)((=n z f n 在区域D 内解析,并且级数∑)(z f n 或序列)}({z f n 在D 内闭一致收敛于函数()f z 或)(z ϕ,那么()f z 或)(z ϕ在区域D 内解析,并且在D 内,)()(1)()(∑+∞==n k n k z f z f或,...).3,2,1(),(lim )()()(==+∞→k z f z k n n k ϕ证明:先证明()f z 在D 内任一点0z 解析,取0z 的一个邻域U ,使其包含在D 内,在U 内作一条简单闭曲线C 。
由定理4.7以及柯西定理,,0)()(1==∑⎰⎰+∞=n Cn Cdz z f dz z f因为根据莫勒拉定理,可见()f z 在U 内解析。
再由于0z 是D 内任意一点,因此()f z 在D 内解析。
其次,设U 的边界即圆K 也在D 内,于是∑+∞=+-110)()(n k n z z z f , 对于K z ∈一致收敛于10)()(+-k z z z f 。