当前位置:文档之家› 水力学实验报告思考题答案(想你所要)

水力学实验报告思考题答案(想你所要)

水力学实验报告思考题答案(想你所要)实验二不可压缩流体恒定流能量方程(伯诺利方程)实验果分析及讨论压管水头线和总水头线的变化趋势有何不同?为什么?测压管水头线(P-P)沿程可升可降,线坡J P可正可负。

而总水头线(E-E)沿程只降不升,线坡J恒为正,即J>水在流动过程中,依据一定边界条件,动能和势能可相互转换。

测点5至测点7,管收缩,部分势能转换成动能,测降低,Jp>0。

测点7至测点9,管渐扩,部分动能又转换成势能,测压管水头线升高,J P<0。

而据能量方程E1=E2+h w 失能量,是不可逆的,即恒有h w1-2>0,故E2恒小于E1,(E-E)线不可能回升。

(E-E) 线下降的坡度越大,即J越大流程上的水头损失越大,如图2.3的渐扩段和阀门等处,表明有较大的局部水头损失存在。

量增加,测压管水头线有何变化?为什么?下二个变化:流量增加,测压管水头线(P-P)总降落趋势更显著。

这是因为测压管水头,任一的总水头E及管道过流断面面积A为定值时,Q增大,就增大,则必减小。

而且随流量的增加阻力损失亦任一过水断面上的总水头E相应减小,故的减小更加显著。

测压管水头线(P-P)的起落变化更为显著。

对于两个不同直径的相应过水断面有为两个断面之间的损失系数。

管中水流为紊流时,接近于常数,又管道断面为定值,故Q增大,H亦增大,(P-P)化就更为显著。

点2、3和测点10、11的测压管读数分别说明了什么问题?测点2、3位于均匀流断面(图2.2),测点高差0.7cm,H P=均为37.1cm(偶有毛细影响相差0.1mm),表明均上,其动水压强按静水压强规律分布。

测点10、11在弯管的急变流断面上,测压管水头差为7.3cm,表明急变流断性力对测压管水头影响很大。

由于能量方程推导时的限制条件之一是“质量力只有重力”,而在急变流断面上其质量外,尚有离心惯性力,故急变流断面不能选作能量方程的计算断面。

在绘制总水头线时,测点10、11应舍弃。

问避免喉管(测点7)处形成真空有哪几种技术措施?分析改变作用水头(如抬高或降低水箱的水位)对喉管压强的几点措施有利于避免喉管(测点7)处真空的形成:减小流量,(2)增大喉管管径,(3)降低相应管线的安装高程,(4)改变水箱中的液位高度。

显然(1)、(2)、(3)都有利于阻止喉管真空的出现,尤其(3)更具有工程实用意义。

因为若管系落差不变,单单降往往就可完全避免真空。

例如可在水箱出口接一下垂90弯管,后接水平段,将喉管的高程降至基准高程0—0,比位比压能p/γ得以增大(Z),从而可能避免点7处的真空。

至于措施(4)其增压效果是有条件的,现分析如下:用水头增大h时,测点7断面上值可用能量方程求得。

准面及计算断面1、2、3,计算点选在管轴线上(以下水柱单位均为cm)。

于是由断面1、2的能量方程(取a2=a3=(1)1-2可表示成此处c1.2是管段1-2总水头损失系数,式中e、s分别为进口和渐缩局部损失系数。

连续性方程有(1)可变为(2)可由断面1、3能量方程求得,即(3)得(4)式( 2)有(Z2+P2/γ)随h递增还是递减,可由(Z2+P2/γ)加以判别。

因(5)(d3/d2)4+c1.2]/(1+c1.3)>0,则断面2上的(Z+p/γ) 随h同步递增。

反之,则递减。

文丘里实验为递减情况,可供空考。

验报告解答中,d3/d2=1.37/1,Z1=50,Z3=-10,而当h=0时,实验的(Z2+P2/γ)=6,,将2)、(3),可得该管道阻力系数分别为c1.2=1.5,c1.3=5.37。

再将其代入式(5)得本实验管道喉管的测压管水头随水箱水位同步升高。

但因(Z2+P2/γ)接近于零,故水箱水位的升高对提高喉管的压强)效果不显著。

变水头实验可证明该结论正确。

毕托管测量显示的总水头线与实测绘制的总水头线一般都有差异,试分析其原因。

与毕托管相连通的测压管有1、6、8、12、14、16和18管,称总压管。

总压管液面的连续即为毕托管测量显示的总包含点流速水头。

而实际测绘的总水头是以实测的值加断面平均流速水头v2/2g绘制的。

据经验资料,对于园在离管壁约0.12d的位置,其点流速方能代表该断面的平均流速。

由于本实验毕托管的探头通常布设在管轴附近,其大于断面平均流速水头,所以由毕托管测量显示的总水头线,一般比实际测绘的总水线偏高。

因此,本实验由1、6、8、12、14、16和18管所显示的总水头线一般仅供定性分析与讨论,只有按实验原理与方法线才更准确。

实验四毕托管测速实验验分析与讨论用测压管测量点压强时,为什么要排气?怎样检验排净与否?毕托管、测压管及其连通管只有充满被测液体,即满足连续条件,才有可能测得真值,否则如果其中夹有气柱,就会,从而造成误差。

误差值与气柱高度和其位置有关。

对于非堵塞性气泡,虽不产生误差,但若不排除,实验过程中很塞性气柱而影响量测精度。

检验的方法是毕托管置于静水中,检查分别与毕托管全压孔及静压孔相连通的两根测压管平。

如果气体已排净,不管怎样抖动塑料连通管,两测管液面恒齐平。

托管的动压头h和管嘴上、下游水位差H之间的大关系怎样?为什么?毕托管校正系数c=11‰(与仪器制作精度有关)。

喇叭型进口的管嘴出流,其中心点的点流速系数=0.9961‰。

所。

验Δh=21.1cm,ΔH=21.3cm,c=1.000。

测的流速系数说明了什么?嘴出流的作用水头为H,流量为Q,管嘴的过水断面积为A,相对管嘴平均流速v,则有作管嘴流速系数。

对点流速而言,由管嘴出流的某流线的能量方程,可得:为流管在某一流段上的损失系数;为点流速系数。

本实验在管嘴淹没出流的轴心处测得=0.995,表明管嘴轴心处的水流由势能转换为动能的过程中有能量损失,但甚激光测速仪检测,距孔口2-3cm轴心处,其点流速系数为0.996,试问本实验的毕托管精度如何?如何率定毕托管c?激光测速仪测得的流速为真值u,则有托管测得的该点流速为203.46cm/s,则ε=0.2‰定毕托管的修正系数,则可令:朗特毕托管的测速范围为0.2-2m/s,轴向安装偏差要求不应大于10度,试说明原因。

(低流速可用倾斜压差计)。

施测流速过大过小都会引起较大的实测误差,当流速u小于0.2m/s时,毕托管测得的压差Δh亦有30倾斜压差计测量此压差值,因倾斜压差计的读数值差Δh为,当有0.5mm的判读误差时,流速的相对误差可达6%。

而当流速大于2m/s时,由于水流流经毕托管头部时会出现局,从而使静压孔测得的压强偏低而造成误差。

同样,若毕托管安装偏差角(α)过大,亦会引起较大的误差。

因毕托管测得的流速u是实际流速u在其轴向的分则相应所测流速误差为>10,则什么在光、声、电技术高度发展的今天,仍然常用毕托管这一传统的流体测速仪器?毕托管测速原理是能量守恒定律,容易理解。

而毕托管经长期应用,不断改进,已十分完善。

具有结构简单,使用精度高,稳定性好等优点。

因而被广泛应用于液、气流的测量(其测量气体的流速可达60m/s)。

光、声、电的测速关仪器,虽具有瞬时性,灵敏、精度高以及自动化记录等诸多优点,有些优点毕托管是无法达到的。

但往往因其机约束条件多及价格昂贵等因素,从而在应用上受到限制。

尤其是传感器与电器在信号接收与放大处理过程中,有否失使用时间的长短,环境温度的改变是否飘移等,难以直观判断。

致使可靠度难以把握,因而所有光、声、电测速仪器测速仪都不得不用专门装置定期率定(有时是利用毕托管作率定)。

可以认为至今毕托管测速仍然是最可信,最经济的测速方法。

实验六文丘里流量计实验验分析与讨论=0.7cm的管道而言,若因加工精度影响实验中,影响文丘里管流量系数大小的因素有哪些?哪个因素最敏感?对d2值时,本实验在最大流量下的μ值将变为多少?-0.01)cm值取代上述d2本实验(水为流体)的μ值大小与Q、d1、d2、Δh有关。

其中d1、d2影响最敏感。

本实验中若文氏管d1 =1.4cm,d2=在切削加工中d1比d2测量方便,容易掌握好精度,d2不易测量准确,从而不可避免的要引起实验误差。

例如当最大为0.976,若d2的误差为-0.01cm,那么μ值将变为1.006,显然不合理。

什么计算流量Q’与实际流量Q不相等?因为计算流量Q’是在不考虑水头损失情况下,即按理想液体推导的,而实际流体存在粘性必引起阻力损失,从而减,Q<Q’,即μ<1.0。

证气—水多管压差计(图6.4)有下列关系:6. 4所述,,应用量纲分析法,阐明文丘里流量计的水力特性。

运用量纲分析法得到文丘里流量计的流量表达式,然后结合实验成果,便可进一步搞清流量计的量测特性。

对于平置文丘里管,影响ν1的因素有:文氏管进口直径d1,喉径d2、流体的密度ρ、动力粘滞系数μ及两个断面间P。

根据π定理有选取三个基本量,分别为:6个物理量,有3个基本物理量,可得3个无量纲π数,分别为:量纲和谐原理,π1的量纲式为有L:1=a1+b1-3c1T:0=- b1M:0= c1得:a1=1,b1=0,c1=0,则π值代入式(1)得无量纲方程为成可得流量表达式为(2))与不计损失时理论推导得到的(3)。

为计及损失对过流量的影响,实际流量在式(3)中引入流量系数µQ计算,变为(4)(2)、(4)两式可知,流量系数µQ与R e一定有关,又因为式(4)中d2/d1的函数关系并不一定代表了式(2)中函的关系,故应通过实验搞清µQ与R e、d2/d1的相关性。

通过以上分析,明确了对文丘里流量计流量系数的研究途径,只要搞清它与R e及d2/d1的关系就行了。

由实验所得在紊流过渡区的µQ~R e关系曲线(d2/d1为常数),可知µQ随R e的增大而增大,因恒有μ<1,故若使实,µQ将渐趋向于某一小于1 的常数。

另外,根据已有的很多实验资料分析,µQ与d1/d2也有关,不同的d1/d2值,可以得到不同的µQ~R e关系曲线,文丘d1/d2=2。

所以实用上,对特定的文丘里管均需实验率定µQ~R e的关系,或者查用相同管径比时的经验曲线。

还有实于被测管道中的雷诺数R e>2×105,使µQ值接近于常数0.98。

流量系数µQ的上述关系,也正反映了文丘里流量计的水力特性。

氏管喉颈处容易产生真空,允许最大真空度为6~7mHO。

工程中应用文氏管时,应检验其最大真空度是否在允许范围2实验成果,分析本实验流量计喉颈最大真空值为多少?实验若d1= 1. 4cm,d2= 0. 71cm,以管轴线高程为基准面,以水箱液面和喉道断面分别为1—1和2—2计算断面,立> 0<-52.22cmH 2O验中最大流量时,文丘里管喉颈处真空度,而由本实验实测为60.5cmH 2O 。

相关主题