分子动力学04
r N r N t
p N p N t
A At A r N t , p N t E K V E E r N t , p N t
N
物理量
图
微观态的运动轨迹示意
pi2 K K p N t i 1 2m 7 V Vb Vnb
1
(一)、引言
对统计力学体系进行计算机模拟时,需要确定体系的 位形(组态)。按照产生位形变化的方法,可以将计 算机模拟分成两大类: 一类是随机( stochastic)模拟方法:MC: 马尔科夫(Markov)过程。 程序简单,占用内存少。难于处理非平衡的问题。
一类是确定性(deterministic)模拟方法:MD MD:按照体系的动力学规律产生位形变化。 程序复杂,占用内存多。可处理非平衡的问题。
x1 , y1 , t1 ; x2 , y2 , t 2 ;; xN , y N , t N ; p1x , p1 y , p1t ; p , p , p ; ; p , p , p Nx Ny Nt 2 x 2 y 2t
r
微观态
N
pN
1 , 2 ,, N
分子动力学中通过对原子之间相互作用的准经典处
理得到的相应的经典的运动方程,可以证明其在一
定条件下与薛定谔方程的解是一致的。
3
The Born-Oppenheimer approximation
由于组成分子体系的原子核的质量比电子大103~105 倍 ,因而分子中电子的运动速度比原子核快得多,当核 间发生任一微小运动时,迅速运动的电子能立即进行 调整,并建立起与变化后的核力场相应的运动状态。 这意味着,在任一确定的核排布下,电子都有相应的 运动状态,同时核间的相对运动可视为电子运动的平 均作用结果,这就是说,分子中电子的运动可以近似 地看成是在核固定不动的情况下进行的。根据这种物 理思想, Born和Oppenheimer处理了分子体系的定态 Schrodinger方程,使分子中核运动与电子运动分离开 4 来,称为 Born-Oppenheimer approximation 近似。
3N个二阶微分方程
d 2 xi 1 V d 2 yi 1 V d 2 zi 1 V , , dt 2 mi xi dt 2 mi yi dt 2 mi zi
i 1,2,, N ; N 10
2 4
0 t N
, Nx ,, 1 , 1x ; N z , Ny , Nx ,, 1z , 1y , 1x z , Ny z , 1y
1991年有人提出了巨正则系分子动力学方法。
10
(二)、简单模型的分子动力学 1957年,Alder和Wainwright采用刚球模型完成了凝聚 相系统的首次分子动力学模拟。在这种模型中,所有 的分子在两次碰撞之间都以一个大小不变的速度沿直 线运动,并且当两个粒子的中心的距离等于球体的直 径的时候,两个粒子将发生完全弹性碰撞过程。一些 早期的模拟也曾使用过方势阱势,如图所示,当两个 粒子的距离超过σ2,两个粒子的作用能为零;当两个 粒子的距离小于σ1时,两个粒子的作用为无穷大;当 两个粒子的距离在σ1和σ2时,相互作用能等于V0。
分子动力学
在分子动力学中,整个系统的连续变化一般完全 可以由牛顿运动方程给出。牛顿运动定律为: .物体在不受外力作用的时候,保持匀速直 线运动的状态; .物体所受的力等于物体的动量的变化量; .作用力和反作用力同时存在。
5
f i mi ai ,
2 ri 2 t mi
Fx i d 2 ri 2 dt mi 1 iV r1 , , ri ,, rN
11
energy
2R0
r
12
固体
液体
13
分子动力学模拟计算的基本步骤如下: (1)确定下一对相互碰撞的粒子,并计算它们的 碰撞时间; (2)计算每个粒子在碰撞时的位臵;
(3)计算两个互相碰撞粒子碰撞后的新的速度;
(4)重复上述三个步骤,直到计算结束。
14
两个互相碰撞粒子的新的速度由线性动量守恒公式
计算出来。像硬球势这样的简单的模型很明显有许
多的不足之处,但是它却给我们提供了一个很好的
机会来观察流体的微观性质。 早期的工作者们对定量确定固体和流体相之间的区 别特别感兴趣,但值得注意的是,正是那些早期的 分子图形系统大大促进了这种工作的进展,他们能 同时表示出粒子的运动轨迹。
15
(三)、连续势能模型的分子动力学模拟 在实际的模型中,由于存在分子之间的相互作用,作 用在每个粒子上的力不仅随着粒子的位臵的改变而改 变,而且随着其它任何一个与之相互作用的粒子的位 臵的改变而改变。 最早使用连续势能模拟氩原子的是Rahman,同时他 也完成了首次对分子液体的模拟(水),并且他在分子 动力学中其它许多方面也做出了重要贡献。在这种连 续势的影响下,所有粒子的运动都是相互关联在一起 的,构成不能用解析方法解决的多体问题。
1 2 r t t r t tv t t a t 2 1 2 v t t v t ta t t b t 2 a t t a t tb t
其中r是粒子位臵坐标,v是粒子的速度,a是粒子的 加速度,b是三阶导数,以此类推。
energy
2R0
r
9
1972年A.W. Lee and S.F. Edwards等人发展了该方法 并扩展到了存在速度梯度的系统,之后此方法被 M.J. Gillan等人推广到了具有温度梯度的非平衡系统 ,从而构成了非平衡分子动力学方法。 到二十世纪八十年代以后,出现了在分子内部对一 部分自由度施加约束条件的分子动力学方法,从而 使分子动力学方法可适用于类似蛋白质等生物大分 子的解析和设计。 1985年人们又提出将电子论和分子动力学方法有机 统一起来的所谓Car- Parrinello方法,即第一性原理 的分子动力学方法。
t
2 2 t r t t r t tv t a t O t 3 2 t vt t v t a t t a t O t 3 2
a t t a t Ot 3
优点和缺点
(1)它的缺点之一就是为求得r(t+δt)必须在两个较 大的量之差后再加一个较小的量δt2a(t),这将导致计 算结果的精确度下降。积累数值误差可以破坏牛顿方 程的时间可逆性,。 (2)坐标 计算达到四级近似,速度计算仅为二级近 似,相差两个近似等级。 (3)坐标计算与速度计算数据无关,且精度高,适 用于仅与粒子构型有关的问题讨论。 (4)每一时间步骤的速度计算滞后于坐标计算。为 了消除这一滞后,采用Verlet算法的改进形式。
N
V r t
分子动力学方法的发展历史
分子动力学方法是二十世纪五十年代后期由B. J. Alder and T. E. Wainwright创造发展的。 B. J. Alder and T. E. Wainwright在1957年利用分子动力学模拟, 验证了早在1939年由Kirkwood根据统计力学提出的预 言:“刚性球组成的集合系统会发生由液相到结晶相 的相转变”。后来人们称这种相转变为Alder相变。 这一结果表明,不具引力的系统也有凝聚态。 到二十世纪七十年代,产生了刚性体系的分子动力学 方法,被应用于水和氮等分子性溶液体系的处理,取 得了成功。 8
根据第一式,可写出:
1 2 r t t r t tv t t a t 2 1 2 r t t r t tv t t a t 2
20
1 2 r t t r t tv t t a t 2 1 2 r t t r t tv t t a t 2
起始条件
r t r 0 tv 0
t 2
2
a 0
F(t) a (t ) 21 m
优点和缺点 Verlet算法的最大优点是简单、直接。 而且所需的存储量比较适当,包括两组位臵坐标r(t),
r(t-δt)和一组加速度a(t)。
算法保留了牛顿方程的时间可逆性。
22
2
分子动力学方法,是确定性模拟方法:按照体系的 动力学规律产生位形变化。需要求解所有粒子的运
动方程。这种多体问题的严格处理,需要建立并求
解所有原子的薛定谔方程,其方程包括荷电部分( 原子核、电子)之间的相互作用及其动能。
Many problems are unfortunately too large to be considered by quantum mechanical methods.
三、分子动力学(Molecular Dynamics) (一)、引言 (二)、简单模型的分子动力学 (三)、连续势能模型的分子动力学模拟 (四)、选择时间步的方法 (五)、 Setting up and running a MD simulation
(六)、温度与压强的控制 (七)、分子动力学模拟举例 (八)、 Comparison between MC and MD methods
16
Fx i d 2 ri 2 dt mi
10 21 在这种情况下,使用有限差分法对牛顿运动方程积分。 17
1、有限差分法(finite difference method)的基本思想
有限差分法的基本思想是:将积分分为许多小阶段δt 在某个时刻t
r(t)
Fi(t)
ai (t)
v(t) r(t)
+)
-)
r t t 2r t r t t t 2 a t O t 4
r t t r t t v t O t 2 2t
0 t