幂等矩阵的性质数学与应用数学专业2009级王素云摘要:本文对幂等矩阵的一些性质进行归纳总结及推广, 并将幂等矩阵与其他特殊矩阵进行了比较. 给出幂等矩阵的概念. 讨论幂等矩阵的主要性质, 并将其进行推广. 然后研究了幂等矩阵的等价性命题, 以及幂等矩阵的线性组合的相关性质. 再结合对合矩阵和投影矩阵更深入的研究幂等矩阵的性质, 分别讨论了幂等矩阵与对合矩阵, 幂等矩阵与投影矩阵的关系.关键字: 幂等矩阵; 性质; 对合矩阵; 投影矩阵; 广义逆矩阵Properties of Idempotent MatrixSuyun Wang, Grade 2009, Mathematics and Applied MathematicsAbstract In this paper, some properties of the idempotent matrix are summarized and extended, and idempotent matrices are compared with other special matrix. The concept of idempotent matrices are given. The main properties of the idempotent matrix are discussed and promoted . Then, the equivalent propositions of idempotent matrix and the nature of the linear combinations of idempotent matrices are studied. The involution matrix and the projection matrix are used to discuss the nature of the idempotent matrices much deeper. The relationship between the idempotent matrix and involution matrix, the idempotent matrix and the projection matrix are discussed. Key Words the idempotent; the nature; involution matrix; the projection matrix; generalized inverse matrix1 引言矩阵理论既是学习经典数学的基础,又是一门最有实用价值的数学理论。
幂等矩阵是矩阵中非常特殊的一类矩阵,也是非常重要且非常常见的一类矩阵,很多其他特殊矩阵都与幂等矩阵有着密切的联系,如对合矩阵及投影矩阵。
幂等矩阵在数学领域及其他许多领域的应用都非常广泛,幂等矩阵更是矩阵论中的一个基础部分,幂等矩阵在可对角化矩阵的分解中具有重要作用。
幂等矩阵在研究广义逆矩阵中占有非常重要的地位。
广义逆的思想可追溯到1903年(E.)i.弗雷德霍姆的工作,他讨论了关于积分算子的一种广义逆(他称之为伪逆)。
1904年,D.希尔伯特在广义格林函数的讨论中,含蓄地提出了微分算子的广义逆。
而任意矩阵的广义逆定义最早是由E.H.穆尔在1920年提出的,他以抽象的形式发表在美国数学会会刊上。
当时人们对此似乎很少注意。
这一概念在以后30年中没有多大发展。
曾远荣在1933年,F.J.默里和J.冯〃诺伊曼在1936年对希尔伯特空间中线性算子的广义逆作过讨论。
T.N.E.格雷维尔、C.R.拉奥和其他人也作出了重要的贡献。
1955年,彭罗斯证明了存在唯一的+X满足前述性质①~=A④,并以此作为+A的定义。
1956年,R.拉多证明了彭罗斯定义的广义逆与穆尔定义的广义逆是等价的,因此通称+A为穆尔-彭罗斯广义逆矩阵。
幂等矩阵是国内外学者都非常感兴趣的一类矩阵,如文[1]研究了幂等矩阵的伴随矩阵的幂等性;文[2]研究了幂等矩阵的可对角化性质,证明了幂等矩阵是可对角化的;文[3]研究了幂等矩阵的线性组合的性质等。
本文在接下来的章节中,我们将先给出幂等矩阵的定义及几个简单命题。
然后给出幂等矩阵的一系列性质,在前人的基础上进行总结以及推广。
再给出幂等矩阵的等价命题,证明了这些命题的等价性,并给出了一些构造幂等矩阵的方法。
然后讨论幂等矩阵的线性组合的可逆性,再结合对合矩阵和投影矩阵及幂等矩阵分别于对合矩阵和投影矩阵的关系对幂等矩阵进行深入研究。
本文亮点在于用区别于文[1]的方式证明幂等矩阵的伴随矩阵是幂等的;从一个新的角度研究了幂等矩阵的性质:结合对合矩阵及投影矩阵研究幂等矩阵的性质。
2 幂等矩阵的概念定义2.1]4[ 若n n C A ⨯∈有性质A A =2, 则称A 为幂等矩阵.为了更好地了解幂等矩阵, 现在来看以下几个命题: 命题2.1 若n 阶方阵A 是幂等矩阵, 则与A 相似的任意n 阶方阵是幂等矩阵.证明 设A B ~(即矩阵B 与矩阵A 相似),则B AP P t s C P n n =∈∃-⨯1.,可逆,且 P A P AP P AP P B 21112---=⋅=, 又 A A =2,B AP P P A P B ===∴--1212. B ∴是幂等矩阵.命题2.1也可以表述为: 若A 是幂等矩阵, 则对于任意可逆阵T , AT T 1-也为幂等矩阵.命题2.2 若n 阶方阵A 是幂等矩阵, 则A 的转臵T A , A 的伴随矩阵*A 及A E -都是幂等矩阵.证明 ()()T TT A A A ==22, 即T A 为幂等矩阵; 对*A , 先证明对任意两个幂等矩阵B A 、, 有关系式()***A B AB =. 由binet Cauchy -公式有:()()=j i AB ,*矩阵AB 的第i 行第j 列的代数余子式 (){}{}()(){}{}(){}{}(){}{}().,,1,1,,2,1,,,1,1,,2,1,,1,1,,2,1,,,1,1,,2,11,,1,1,,2,1,,,1,1,,2,11,**111j i jk n k ki ki n k jk n k j i j i A B A B B A n i i n k k B n k k n j j A n i i n j j AB ===+-+-⋅+-+--=+-+--=∑∑∑===++所以, ()()()2*****2*A A A AA A A ====; 对A E -, 有 ()A E A A E A A E A E -=+-=+-=-22222. 命题2.3 若A 是幂等矩阵, A 的k 次幂仍是幂等矩阵.证明 可用数学归纳法证明. 当1=k 时, 显然成立.假设当n k =时, 命题成立, 现考虑1+n 情形:()1222221+++=⋅=⋅==n n n n n A A A A A A A .即当1+=n k 时命题仍成立, 由数学归纳法知, 对任意N k ∈命题都成立.3 幂等矩阵的性质3.1 幂等矩阵的主要性质性质3.1.1 0矩阵和单位矩阵E 都是幂等矩阵.由0和E 的定义可知命题成立.性质3.1.2 幂等矩阵A 满足: ()()0=-=-A A E A E A .证明 ()02=-=-=-A A A A A E A .()02=-=-=-A A A A A A E .性质3.1.3 若矩阵B A ,均为幂等矩阵, 且BA AB =, 则AB 与T T B A 也是幂等矩阵.证明 ()AB B A B AB A B BA A AB AB AB ==⋅⋅=⋅⋅=⋅=222.同理, T T B A 也是幂等矩阵.性质3.1.4 若幂等矩阵A 可逆, 则E A =.证明 E A A A A A A A =⋅=⋅=∴=--1212, .性质3.1.5 幂等矩阵的特征值只能为0或1.证明 设A 是幂等矩阵, 即A A =2, 再设A 的特征值为λ, 则λλ=2(由特征值的性质), 故10或=λ.由这个性质可以知道幂等矩阵是半正定矩阵.性质3.1.6 幂等矩阵可对角化.证明 设A 是幂等矩阵, λm 为A 的最小多项式, 由性质3.1.5知: λλ=m 或1-λ或()1-λλ, 最小多项式是互素的一次因式的乘积, 从而A 可对角化.性质3.1.7 若A 是幂等矩阵, 则()1,0≠∈∀a R a , aE A +是可逆矩阵. 证明 A A =2 , ()()[]()()E a a E a a A A E a A aE A 1112+-=+--=+-+∴.又1,0≠a , ()()()[]E E a A a a aE A =⎭⎬⎫⎩⎨⎧+-+-+∴111. 故aE A +可逆, 且()()()[]E a A a a aE A 1111+-+-=+-. 性质3.1.8 幂等矩阵的迹等于幂等矩阵的秩, 即()()A rank A tr =. 证明 设()X r A rank ,,λ=分别为A 的特征值及其相应的特征向量, 于是有: X AX X A AX X 22λλλ====, 从而有()01=-λλ. 由此可推得结果. 性质3.1.9 若A 满足()n r r E A A =+-, 则A 是幂等矩阵.证明 设0=Ax 的基础解系为r ξξξ,,,21 (其实它们都是特征值0的特征向量), 再设()0=-x E A 的基础解系为t r r r +++ξξξ,,,21 (它们都是特征值为1的特征向量), 且n t r =+, 设矩阵(可逆)()n r r T ξξξξξ,,,,,,121 +=满足B E AT T t =⎪⎪⎭⎫ ⎝⎛=-0001, 而B 是幂等矩阵, 故1-=TBT A 也是幂等矩阵. 例3.1.1 设B A 、都是幂等矩阵, 且BA AB =, 证明: AB B A -+是幂等矩阵.证明 由题意可知B B A A ==22,, 且BA AB =, 于是:()()2222AB ABB ABA BAB B BA AAB AB A AB B A +---++-+=-+ABAB AB ABA BAB B BA AB AB A +---++-+= AB AB AB BA B BA A +---++=AB B A -+=.例3.1.2 设B A ,为n 阶幂等矩阵, 且BA AB =, ()0,≠∈∀ab R b a . 证明 (1) 若()E bB aA =+2则0==BA AB 或1±=+b a .(2) 若()E bB aA =-2则0==BA AB 或1±=-b a .证明 (1) ()E bB aA =+2, 由题设知BA AB B B A A ===,,22, 则有()B b a b A B A a B b a b B A a b A B A a bB aA 22222222++=+++=+. 对上式两边同乘于B A ,得: AB AB b abAB AB a =++222.移项得 ()()[]0112222=-+=-++AB b a AB b ab a . 从而有()012==+AB b a 或, 即0==BA AB 或1±=-b a . 同理可证( 2).例3.1.3 设A 是n 阶实对称阵, 且A A =2, 证明: ∃正交矩阵T ,⎥⎦⎤⎢⎣⎡=-000.1r E AT T t s . 证明 设ξ是属于λ的特征向量, 那么λξξ=A ,()ξλξλλξξ22===A A A 又A A =2,λξξ=2A , 从而()02=-ξλλ,但0≠λ, 10,2或故==∴λλλ. (由幂等矩阵的性质也可以得知), 故A 的特征值不是0就是1.故⎥⎦⎤⎢⎣⎡=∃-000.,1r E AT T t s T 正交矩阵(T 可由特征向量构造, 将A 转化为标准型即为所求). 3.2 幂等矩阵的等价命题幂等矩阵的等价命题在实数域内与复数域内基本是一致的, 故在此只考虑幂等矩阵在实数域内的等价命题.定理3.2.1 以下命题等价:(i) A A =2; (ii) ()*2*A A =, ()T T A A =2; (iii) ()A E A E -=-2; (iv) ()A Im x x Ax ∈⇔=;(v) ()()A E Im A Ker -=, ()()A E Ker A Im -=; (vi) ()(){}0A E Im A Im =-⋂, ()(){}0A E Ker A Ker =-⋂; (vii) ()()n R A E Im A Im =-⊕, ()()n R A E Ker A Ker =-⊕; (viii) ()n A E rank rankA =-+;(ix) ∃非奇异矩阵()0≠P P , 1000.-⎥⎦⎤⎢⎣⎡=P I P A t s r , 其中rankA r =. 证明 (i)、(ii)、(iii)的等价性是易证的.(i)⇔(iv) A A =2 , 由性质5知, A 的特征值只能为0或1, 即()A Im 为A 对应特征值1的特征子空间. ()A Im x x Ax ∈⇔=∴.(i)⇔(v) “⇒” ()02=-∴=A E A A A .故A E -的列向量都满足0=Ax . 从而()()A Ker A E Im ⊆-,又()A Ker α∈∀, 有:()()()A E Im A E A E A A -∈⇒-=-+⇒=ααααα0. 由α的任意性可知()()A Ker A E Imf ⊇-. 综上, ()()A Ker A E Im =-.“⇐” 对n R ∈∀α有()()()A Ker A E Im αA E =-∈-,即()()A Ker A E ∈-α. 于是有()[]()002=-⇒=-ααA A A E A .由α的任意性得A A A A ==-220,即. 同理可证⇔=A A 2()()A E Ker A Im -=. (i)⇔(vi) 若()()A E Im A Im x -⋂∈, 即()z A E Ay x -==对某两个z y 、成立, 则()02=-==z A E A y A x , 故()(){}0A E Im A Im =-⋂. 同理可证后面一个式子. 从而(iv)成立. 反之, 若(vi)成立, 则对任一x , 有()x A E Ax x -+=是x 的唯一分解.但又有唯一分解()x A E x A x 22-+=,又()()()A E Im x A E ,A Im x A 22-∈-∈. 于是对任何x 成立着x A Ax 2=, 从而A A =2. (vi)⇔(vii) 注意到()x A E Ax x -+=对任何x 成立, 故总有()()n R A E Im A Im =-⊕, 故(vi)与(vii)等价. (vii)⇔(viii)()()n R A E Im A Im =-⊕总是成立的. 由维数公式知()[]()[]()n A E A A E A A E A =-+=-⋂+-+dim dim dim dim . 由性质3.1.8可知, 若A A =2, 则trA r A =. 另外, 利用矩阵的满秩分解,我们可以具体的找出(ix)中的变换阵()0≠P P . 设11Q P A =,22Q P A E =-均为满秩分解, 则有[]E Q Q P P =⎥⎦⎤⎢⎣⎡2121,, 且[]⎥⎦⎤⎢⎣⎡2121,Q Q P P ,均为方阵. 从而[]E Q Q P P =⎥⎦⎤⎢⎣⎡2121,. 由此可知r E P Q =11, 021=P Q , 012=P Q , r n E P Q -=22. 于是可证明[]⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡000,2121r E P P A Q Q .从此式还可以看出, 1P 与2P 的列向量分别是A 的属于特征值1与0的特征向量. 最后,矩阵的满秩分解可用来判定幂等性: 若21A A A =是满秩分解, 则A A =2当且仅当E A A =12. 另一方面, 常用此特殊性来构造幂等矩阵. 下面给出几个构造幂等矩阵的定理:定理3.2.2]5[ 设非零列向量()T n αααα,,, 21=, 则n 阶矩阵T E A αα-=为幂等矩阵⇔122221=+++=n T ααααα .证明 “⇒” A A =2 , ()()T T T E E E αααααα-=--∴, 即()T T T T E E αααααααα-=+-2, 从而()01=-T T αααα, 因为α, 0≠T α,因此, 122221=+++=n T ααααα .“⇐” 122221=+++=n T ααααα , ()A E E A T T T T =-=+-=∴αααααααα22.推论3.2.1 令T E A αα-=, 其中: ()T n αααα,,, 21=为非零列向量. 若122221=+++=n T ααααα , 则n 阶方阵A 不可逆.证明 设A 可逆, 则由幂等矩阵的性质可知E A =,当122221=+++n ααα 时, 由定理3.2.2可知A 为幂等矩阵, 即A A =2,但T E A αα-=, 所以T E E αα-=, 得0=T αα, 与122221=+++n ααα 矛盾, 所以A 不可逆.定理3.2.3]6[ 若A 和B 是同阶幂等矩阵, 则B A +为幂等矩阵⇔0=+BA AB .证明 ()BA AB B A B BA AB A B A +++=+++=+222 ,0=+⇔+∴BA AB B A 为幂等矩阵.定理3.2.4 若A 和B 是同阶幂等矩阵, 且BA AB =,则AB 为幂等矩阵.证明 由题意可得 ()AB AABB ABAB AB ===2, 即AB 为幂等矩阵.定理3.2.5 若A 为幂等矩阵, 且E A ≠, 则A 不可逆.证明 设A A =2,则有()0=-E A A . 若A 可逆, 则1-∃A ,t s .E A A AA ==--11 在()0=-E A A 的两边同时乘以1-A , 得0=-E A ,即E A =. 矛盾, 故A 不可逆.定理3.2.6 若A 是幂等矩阵, 且E A ≠, 则矩阵方程0=Ax 有非零解. 证明 由定理3.2.5可知, A 不可逆, 即0=A .故矩阵方程0=Ax 有非零解.定理3.2.7 若A 和B 是同阶幂等矩阵, 则B A -是幂等矩阵⇔B BA AB ==.证明 “⇒” B A - 是幂等矩阵,()BA AB B A B BA AB A B A B A --+=+--=-=-∴222, 将BA AB B +=2两边分别左乘和右乘B 得:BBA BAB B +=22, 即BA BAB B +=2. (3.2.1) BAB AB B +=222, 即BAB AB B +=2. (3.2.2) 两式相减可得BA AB =, 从而B BA AB ==.“⇐” ()B A B B B A B BA AB A B A -=+--=+--=-222.3.3幂等矩阵线性组合的可逆性在本节中, 我们讨论两幂等矩阵线性组合bB aA P +=的可逆性. 引理3.3.1]7[ 设矩阵A 是n n ⨯阶方阵, 则A 可逆(){}0=⇔A Ker .定理 3.3.1]8[ 设矩阵B A ,均是幂等矩阵, 即B B A A ==22,. 若存在两个非零复数b a ,, 且0≠+b a 使得bB aA +可逆, 则对所有的复数d c ,, 满足0≠+d c , 则线性组合dB cA +都是可逆的.证明 设0,0,0,≠+≠≠∈d c d c C d c 且,.对 ()dB cA Ker x +∈∀, 有()0=+x dB cA .于是 d B x c A x-=. (3.3.1) 将上式两边依次左乘B A ,, 可得:dBx cBAx dABx cAx -=-=,. (3.3.2) 由(3.3.1)、(3.3.2)可得BAx Ax ABx Bx ==,. (3.3.3) 又()22222B b abBA abAB A a bB aA +++=+,()Bx b abBAx abABx Ax a x bB aA 222+++=+∴.将BAx Ax ABx Bx ==,代入上式可得()Bx b abBAx abABx Ax a x bB aA 222+++=+∴()()()()x bB aA b a Bx b a b Ax b a a ++=+++=. 由于bB aA +可逆,将上式两边同时左乘()1-+bB aA 得 ()()bBx aAx x bB aA x b a +=+=+. (3.3.4) 再左乘A 得:bABx aAx bBx aAx +=+.即ABx Ax =. 代入dABx cAx -=可得()aABx Ax Ax d c ==⇒=+00.注意到(3.3.3)式有0=Bx , 因此由(3.3.4)式可得()00,0=⇒≠+=+x b a x b a 但.因此(){}0=+dB cA Ker . 由引理1知dB cA +是可逆的.在定理3.3.1中令1==d c , 立即可以得到:推论3.3.1设矩阵B A ,均是幂等矩阵, 即B B A A ==22,. 若B A +可逆, 则C b a ∈∀,, 满足0≠+b a , 线性组合bB aA +都是可逆的. 定理3.3.2设矩阵B A ,均是幂等矩阵, C b a ∈∀,, 下列命题等价: ⑴ B A -可逆.⑵bB aA +及AB E -是可逆的.证明 (1)⇒(2) 对()bB aA Ker x +∈∀由定理1的证明过程知BAx Ax ABx Bx ==,.从而()()022222=+--=+--=-x B BAx ABx x A x B BA AB A x B A又 B A -可逆, 所以0=x . 即(){}0=+bB aA Ker . 由引理3.3.1知 bB aA +可逆. 同样地,对 ()bB aA Ker x +∈∀()ABx x x AB E =⇒=-⇒0. 两边同时左乘A , 得Bx BAx x ABx Ax =⇒==.所以 ()02=+--=-Bx BAx ABx Ax x B A .又 B A -可逆, 所以0=x . 所以(){}0=-AB E Ker .由引理3.3.1知E AB -可逆.(2)⇒(1) 对()B A Ker x -∈∀, 有()Bx Ax x B A ==-即,0从而有 Bx BAx ABx Ax ==,.所以 ()()()x b B A B a A BbB aA x AB E bB aA +-+=-+ 0=-=bBAx bBx .0=⇒x .又bB aA +及AB E -是可逆的. 知(){}0=-B A Ker .由引理3.3.1知B A -可逆. 定理证毕.在定理3.3.2中令1==b a , 立即可以得到:推论3.3.2设矩阵B A ,均是幂等矩阵, 下列两个命题等价:⑴ B A -可逆.⑵ B A +及AB E -可逆.4 幂等矩阵与其他矩阵的关系4.1幂等矩阵与对合矩阵4.1.1对合矩阵定义4.1.1.1 若矩阵A 满足()为单位矩阵E E A =2, 则称A 为对合矩阵. 对合矩阵和幂等矩阵是密切相关的, 它们的性质也非常相似, 这里就不在一一举出了, 先举出几个主要性质并进行证明:性质4.1.1.1 若A 是对合矩阵, 则()()n r r E A E A =+-+, 反之, 也成立. 证明 由A 是对合矩阵可知E A =2, 故()()002222=-+⇒=-⇒=E A E A E A E A .由秩的性质可知()()n r r E A E A ≤+-+.又()()E A E A E 2=-++, ()()n r r E A E A ≥+∴-+.综上 ()()n r r E A E A =+-+.反过来, 即可证明当()()n r r E A E A =+-+时, A 是对合矩阵. 性质4.1.1.2 对合矩阵的特征值为1或-1.证明 类似于幂等矩阵, 设λ为对合矩阵A 的特征值,由于A 满足E A =2, 故λ满足1112-=⇒=或λλ.性质4.1.1.3 A 是对合矩阵, 则A 一定与对角矩阵相似.证明 当E A ±=时, A 本身已经是对角矩阵.当E A ±≠时,A 的特征值为1或-1. A 的属于1的特征子空间的维数等于齐次线性方程组()0=-x A E 的解空间的维数()A E r n --; A 的属于-1的特征子空间的维数等于齐次线性方程组()0=--x A E 的解空间的维数()A E r n +-, 由性质4.1.1.1得()[]()[]()()[]n n n r r n r n r n A E A E A E A E =-=+-=-+-+-+-22.因此A 可以对角化. 设()A E r t +=, 由性质4.1.1得()r r n A E =--. 因此A 的相似标准型为⎥⎦⎤⎢⎣⎡--r n rE E 00. 4.1.2 幂等矩阵与对合矩阵的关系命题4.1.2.1 设A 是n 阶矩阵, 则以下两个命题等价:(1)若()n r r E A A =+-, 则A 是幂等矩阵;(2)若()()n r r E A E A =+-+, 则A 是对合矩阵.证明 (1)⇒(2) ()()n r r E A E A =+-+,()()n r r E A E A =+∴-+2121可变形为()()()n r r E E A E A =+--+2121.由(1)有()E A B +=21是幂等矩阵, 而E A B B =⇒=22, 即A 是对合矩阵.同理可证 (2)⇒(1). 原命题得证.命题4.1.2.2 矩阵A 和B 都是对合矩阵, 则()()B E A E +-21,21幂等矩阵.证明 ()()()()A E E A E A A E A E -=+-=+-=⎥⎦⎤⎢⎣⎡-2124124121222. ()()()()B E E B E B B E B E +=++=++=⎥⎦⎤⎢⎣⎡+2124124121222. 即()()B E A E +-21,21都是幂等矩阵, 原命题得证.定理4.1.2.1]9[ 方阵A 为幂等矩阵⇔方阵E A -2为对合矩阵. 证明 “⇒” ()E E A A E A A E A =+-=+-=-44442222.即E A -2都是对合矩阵, 原命题得证.“⇐” E A -2 是对合矩阵, ()222442E A A E E A +-==-∴. A A =⇒2, 即A 是幂等矩阵.4.2 幂等矩阵与投影矩阵4.2.1 投影矩阵投影矩阵是研究广义逆矩阵和最小二乘问题的重要方法与手段. 定义4.2.1.1]10[ 设矩阵n m A ⨯, 任意m n ⨯矩阵X , 若满足:(1) A AXA =; (2) X XAX =;(3) ()AX AX =*; (4) ()XA XA =*中的一个或者几个条件, 都称为A 的广义逆矩阵. 上面四个方程称为Moore-Penrose 方程.向量空间n C 可以分解成子空间L 与M 的直和, 即M L C n ⊕=, 则n C 中任意的向量x 可以唯一的分解成z y x +=, 其中M z L y ∈∈,, 则称y 为向量x 沿着M 到L 的投影, 而称n C 中满足()y x P M L =,的变换M L P ,为沿着M 到L 的投影算子或投影变换. 投影算子M L P ,在n C 的基n e e e ,,,21下的矩阵称为投影矩阵, 记为M L P ,. 投影矩阵与幂等矩阵是一一对应的.投影矩阵的种类有很多, 在文[4]中有细致的讨论, 如斜投影矩阵, 正交投影矩阵, 加权正交投影矩阵等, 我们在这里只讨论特殊的正交投影矩阵与幂等矩阵的关系.4.2.2幂等矩阵与正交投影矩阵的关系引理4.2.2.1]10[ 对任意矩阵A 有:(1)()**A A A A -与广义逆矩阵()-A A *的选择无关; (2)()A A A A A A =-**, ()****A A A A A A =-. 证明 (1) 因为()()A A Im A Im **=, 故存在矩阵X , AX A A t s **.=,于是()()AX A X AX A A A A A X A A A A ********==--右端与()-A A *选择无关. (2) 记()A A A A A A D -=-**, 可直接证明0*=D D , 于是0=D . 类似的, 可以证明第二式.定理4.2.2.1]10[设A 为任一矩阵, 记A P 为向ImA 的正交投影阵, 则()*_*A A A A P A =. 证明 由以上引理4.2.2.1可知, A P 所含的广义逆()_*A A 的选择无关. 设B 为一满足()()⊥=A Im B Im 的矩阵, 则对任意向量n C x ∈, 有分解式21Bt At x +=这里21t t 和为两个适当维数的向量. 依A P 的定义我们有121At Bt P At P x P A A A =+=, 对一切21,t t 成立.这说明A P 满足矩阵方程⎩⎨⎧==)2.2.2.4(.0)1.2.2.4(.B P A A P A A由(4.2.2.2)知()()()A Im B Im P Im *A =⊂⊥.于是AX P t s X A =∃*.,矩阵. (4.2.2.3)代入(4.2.2.1)得A A A X =**,即()**A X A A =. (4.2.2.4) 显然, 此矩阵方程是相容的.再由相容性定理]10[可知(4.2.2.4)的解为()*_*A A A X =, 代入(4.2.2.3)即可得()*_*A A A A P A =, 定理得证. 定理4.2.2.2 设21P P 、为两个正交投影阵, 则(1)21P P P +=为正交投影阵02221==⇔P P P P ;(2)当01221==P P P P 时, 21P P P +=为向()()21P Im P Im ⊕上的正交投影.证明 (1) 充分性显然.现证必要性: 设P 是一个正交投影阵, 于是P P =2, 01221=+⇒P P P P . (4.2.2.5) 用1P 分别左乘和右乘(4.2.2.5), 有:012121=+P P P P P . (4.2.2.6) 012112=+P P P P P . (4.2.2.7) (4.2.2.6)+(4.2.2.7)得: 0121=P P P .再由(4.2.2.6)和(4.2.2.7)可得 01221==P P P P .(2) 我们只需证()()()21P Im P Im P Im ⊕=对()Px y t s C x P Im y n =∈∃∈∀.,,, 于是2121y y x P x P Px y +=+== ()()2,1,=∈=i P Im x Py i i i 从021=P P 可以推出21y y ⊥, 证毕.定理4.2.2.3 设21P P 、为两个正交投影阵, 则(1)21P P P =为正交投影阵1221P P P P =⇔;(2)当1221P P P P =时, 21P P P =为向()()21P Im P Im ⊕上的正交投影. 定理4.2.2.4 设21P P 、为两个正交投影阵, 则(1)21P P P -=为正交投影阵21221P P P P P ==⇔;(2)当21P P P -=为正交投影阵时, P 为向()()⊥⊕21P Im P Im 上的正交投影.投影矩阵与幂等矩阵是一一对应的, 这两个定理的证明类似于幂等矩阵的有关性质的证明, 此处略去.结束语 本文采用了直接证明的方式证明了幂等矩阵的伴随矩阵是幂等的. 采用数学归纳法证明了若A 是幂等矩阵, 则A 的k 次幂仍是幂等矩阵. 但在本文中只讨论了实数域内的幂等矩阵的等价命题, 还可以推广到复数域; 且仅讨论了2次幂等矩阵, 推广到k 次会有更多更好的结果.参考文献[1] Jin Bai Kim, Hee Sik Kim, Seung Dong Kim. An adjoint matrix of real idempotent matrix [J]. of Math. Research & Exposition, 1997, 17(3): 335-339.[2] 陈文华. 幂等矩阵与对合矩阵的对角化[J]. 临沧师范高等专科学校学报, 2009.6, 18(2): 82-83.[3] ZUO Kezheng, Some Rank Equalities about Combinations of Two Idempotent Matrices[J]. Wuhan University Journal of Natural Sciences, 2010, 15(5): 380-384.[4] 陈永林. 广义逆矩阵的理论与方法[M]. 南京师范大学出版社, 2005: 7-13.[5] 樊正恩. 幂等矩阵的几个注记[J]. 高师理科学刊, 2001.1, 31(1): 36-39.[6] 张凯院, 徐仲, 陆全. 矩阵论典型题解及自测题[M]. 西北工业大学出版社, 2003.10: 228-234.[7] 北京大学数学系几何与代数教研室前代数小组. 高等代数(第三版)[M]. 高等教育出版社, 2003.9: 304.[8] 山军. 幂等矩阵线性组合可逆性的若干条件[J]. 钦州学院学报, 2006.12, 21(5): 17-19.[9] 肖润梅. 幂等矩阵的概念及性质[J]. 雁北师范学院学报, 2003.10,19(5): 64-68.[10] 王松桂, 吴密霞, 贾忠贞. 矩阵不等式[M]. 科学出版社, 2006.5: 29-31.致谢经过近两个月的努力,本论文终于在我的指导老师李小燕教授的悉心指导下完成了,在写论文的过程中,从论文的选题,查找资料,拟定提纲,到确定论文以来,尽管遇到了很多的困难,但都在老师和同学的帮助下顺利解决了。