当前位置:文档之家› 水生态修复技术方案分析

水生态修复技术方案分析

水生态修复技术方案分析根据剑河水生态修复技术路线总体设计,合成了“生态调水方案设计 (剑河水库)、水土流失治理(上游)、深潭浅滩(中游)、截污纳管、曝气复氧、生物过滤、生态护坡、生物浮岛、人工湿地”等9项工程。

1 截污纳管工程技术方案截污纳管是一项水污染处理工程,就是通过建设和改造位于河道两侧的工厂、企事业单位国家机关、宾馆、餐饮、居住小区等污水产生单位内部的污水管道(简称三级管网),并将其就近接入敷设在城镇道路下的污水管道系统中(简称二级管网),并转输至城镇污水处理厂进行集中处理。

简言之,即污染源单位把污水截流纳入污水截污收集管网系统进行集中处理。

剑河下游武当山镇是剑河流域唯一的城镇,近年来城市发展速度很快,市政建设水平也得到了很大的提高,但由于起步晚,老城区结构复杂,正在推进中的污水管网建设还存在着相当多的问题,也是本项目必须解决的问题(图6-1),主要有以下七个方面。

(1)剑河右岸的主管道在乔家院桥处中断。

据现场调查,中断的原因在于有一处拆迁任务没有完成,必须采取有效手段,解决矛盾,贯通管网。

(2)龙潭口下方有两处居民区位于二级管网的高程之下,污水无法自流进入管网。

河岸附近居民自行凿穿河岸防护墙,将污水粪便直排剑河;远河岸居民生活污水分别排人剑河的支流沟渠,最终汇入剑河。

对于这种无法进入管网的污水,主要采用分散式污水处理技术进行就地处理,严防混杂着垃圾的污水进入剑河。

(3)部分居民将自家的下水道与剑河两岸的雨水管贯通。

这种情况主要发生在剑河两岸的主管网尚未竣工之前,现一级管道已经铺设完成。

对于仍然排污的雨水管要坚决截断,将污水纳人污水管道。

当地居民卫生间有旱厕和卫生间,旱厕产生的粪便污水多用于菜地施肥,卫生间粪便污水直接排入街坊道路下的排水暗渠,最终经过剑河河堤上的排污口进入剑河。

(4)通神沟污水明渠排污。

通神沟位于剑河城区上段老营宫村七组村庄内,源头来自武当山景区大门化粪池出水,沿途接纳村庄内约500户居民的生活污水,在剑河右岸河堤方形排污口排入剑河。

该排污口前设有截流井,截流井处溢流堰为活动堰门,经常处于半开状态,因此晴天时污水流入剑河。

(5)玉带河排污。

玉带河横穿玉虚宫,源头有精铸厂工业废水排入,沿途流经村庄,生活污水大量汇入,在剑河左岸河堤拱形排污口排入剑河。

排污口前有左岸管道施工预留的DN600钢筋混凝土管,由于河堤地面较髙,预留管髙于玉带河内水位0.5m,水流无法进入管道而全部直排。

(6)剑河左岸下游精铸厂工业废水污染。

在剑河左岸下游有2家精铸厂,其生产工艺中产生大量酸性生产污水,厂区内只设有简单的调节沉淀池,经过短暂停留,污水直接排入剑河。

(7)武当山污水处理厂出水标准为一级B,而随着丹江口水库的蓄水,该河道将成为一个面积约1.83km2的封闭性水体(下游新区段),在2013年丹江口水库正式蓄水之前,下游新区段得到清水补给的机会很小,应该提高污水处理厂的出水标准。

2 曝气复氧工程技术方案由于剑河城区段河流污染类型大多属于有机污染型,而水体的黑臭又是无氧时厌氧菌作用的结果,所以对河流水体采用人工曝气的方式进行充氧,加速水体复氧过程,提高水体中好氧微生物的活力,是改善水质的有效办法。

曝气复氧的功效:一是消除黑臭,向已遭受严重有机污染、处于黑臭状态的河道进行人工曝气后,充入的溶解氧可以迅速地氧化有机物厌氧降解时产生的硫化氢、甲硫醇等致黑致臭物质,有效地改善、缓和水体的黑臭程度;二是改善水质,当水中溶解氧增加后,就会使沉入水中的有害的造成污染的有机物逐步降解为简单的对人体无害的低分子量的无机物,如甲烷,会发生逐步氧化而最终变成水和二氧化碳;三是恢复生态平衡在河湖水体缺氧时,水体中鱼虾及其他水生生物会死亡甚至绝迹,经复氧治理后,大量有毒害的污染物被降解,并能提供水生生物必需的溶解氧,使河流重新成为生态平衡的活水。

2.1 人工曝气复氧技术类型(1)纯氧-微孔布气设备曝气系统。

纯氧-微孔布气设备曝气系统由氧源和微孔布气管组成,无动力装置,系统运行可靠,无噪声。

德国Messer公司的曝气系统是一种较好的纯氧-微孔布气设备曝气系统,它采用一种特殊的大阻力橡胶微孔布气管,其微气泡直径约为1 mm,氧转移效率为每米水深15%,以“曝气垫”的形式置于河床上。

这种曝气垫强度高,在河流中安装方便,且不易堵塞,在水深较大(也)的河流,该系统的充氧效率可达70%左右。

德国在埃姆舍(E mscher)河的治理中采用了此类系统。

(2)纯氧-混流增氧系统。

纯氧-混流增氧系统由氧源、水泵、混流器和喷射器组成。

该类系统的工作原理为:河水经水泵抽吸加压后将氧气或液氧注人设置在增压管上的文氏管,利用文氏管将气泡粉碎和溶解,氧气-水的富氧混合液经过特制的喷射器进入水体。

该类系统的充氧效率较高,在3.5m水深时即可达到70%左右。

纯氧-混流增氧系统的实现方式可采用移动式水上充氧平台,如英国泰晤士河的充氧船(图6-2、图6-3)、上海苏州河的充氧船等;也可采用将喷射器安置在河床边近岸处的固定式充氧站。

纯氧增氧技术的优势在于其充氧效率较高,但由于这种方法需要从专门的制氧工厂运来液态氧(LOX),或者利用门的制氧设备(PSA制氧设备)制氧,导致成本较高,妨碍其广泛使用。

(3)鼓风机-微孔@管曝气系统。

由鼓风机和微孔布气管组成的鼓风曝气系统被广泛用于生活污水和工业废水的好氧生化处理工艺中。

近年来氧转移效率较高的微孔布气管的使用,使该供氧方法的充氧效率得到较大提高,可达25% ~35%(水深5 m)。

鼓风机-微孔布气管曝气系统的主要缺点是:安置在河底的布气管对泄洪有一定的影响;布气管损坏后维修较困难;河流水位变化较大,选择鼓风机须满足高水位时的风压,导致在低水位曝气时动力效率较低。

此外,为了降低鼓风机噪声的影响,风机房一般设置在地下,从而增加了投资费用。

因此,鼓风机-微孔布气管曝气系统一般用于郊区不通航河流,如上海市徐汇区上澳塘河道即采用了这一曝气系统。

(4)叶轮吸气推流式曝气器。

叶轮吸气推流式曝气器是河流、湖泊人工充氧中较广泛使用的充氧设备之一。

该类设备一般由电动机、传动轴、进气通道与叶轮等部件组成。

其原理主要是利用旋桨在进气通道造成负压,从而吸入空气,并随水射入河水中。

该技术根据叶轮吸气推流式曝气器的叶轮形状、位置、数量(单叶或复叶)、进气通道的位置,可分为轴向流液下曝气器和复叶推流式曝气器。

美国曾将此技术应用于韩国的釜山港。

我国研究人员也先后于在北京清河、1998年在上海苏州河上进行了应用。

叶轮吸气推流式曝气器的优点是:安装方便,只需将装上浮筒的设备安置在水面上用缆绳加以固定即用可。

安装工程量小,并可根据需要随时调整位置和台数;由于设备漂浮在水面,受水位影响较小;设备安装在河道内,除了电控设备外,基本不占地,维修简便。

叶轮吸气推流式曝气器的缺点是:叶轮易被水中的漂浮物缠绕堵塞;在水深较小的河流中使用时易将底泥搅起;当桨叶深入水深较大处时,其从水面上大气中向下抽吸的能力将减弱,故其向深水充氧的能力较差;影响航运。

(5)水下射流曝气设备。

水下射流曝气设备的工作原理是:用潜水泵将水吸人增压从泵体高速推出后,利用装置在出水管道水射器将空气吸入,气-水混合液经水力混合切割后进人水体(图6-4)。

2.2河流曝气复氧技术应用实例(1)英国泰晤士河。

世界上最著名并且被大量报道的河流曝气整治项目,应属英国泰晤士河河口的增氧设施。

泰晤士河从19世纪工业化开水质即迅速恶化,是世界上污染最早、危害最烈的城市河流之经过自20世纪60〜70年代以来高强度的持续治理,现在水质得以改善,已有近百种鱼类重现河中。

1980年,泰晤士河水务局制造了一艘机动纯氧曝船(Thames Bubbler),该船采用变压吸附制氧(PSA)技术,同时附装VITOX混流增氧设备。

测定的试验数据表明,进行的一次溶解氧含量测定结果,Thames Bubbler使河流缺氧段的溶解氧含量升高了6.8%。

鉴于曝气船机动、快速、有效的特点,1985年夏季,另一艘充氧能力为3 0t/d的曝气船(Thames Vitality)也投入了使用。

(2)德国Emscher河。

Emscher河为德国鲁尔(Ruhr)河的支流,20世纪70年代初曾沦为周边工业区的一条污水走廊。

20世纪70年代在治理该河污染时,沿河流设置了10个纯氧充氧站进行人工曝气。

充氧站采用液氧作为氧源,以铺设在河底的大阻力橡胶微孔管为曝气装置,在曝气站附近水体的溶解氧浓度可升高至15mg/L,然后沿河道逐渐下降,直至下游7 km处降至零。

同时对沿岸排放的污水进行截流和建造污水理厂。

随着Emscher河水质的逐渐改善,充氧站逐渐拆除。

到1998年时,该河仅保留一个充氧站作为突发性河流污染事故的应急措施。

(3)韩国釜山港湾。

为迎接1986年的亚运会和1988年的夏季奥运、在韩国水萦江河口釜山港湾的快艇区域安置了 9台73.55 kW( 100马力)的曝气装置。

研究表明,曝气能够有效地改善水萦江河口快艇区域的水质,可以增加D O、削减COD、提高透明度、消除臭味。

这些效果为1986年亚运会和1988年夏季奥运会的快艇比赛提供了良好的水质条件。

(4)美国圣克鲁斯港。

在20世纪70年代和80年代初期,美国圣克鲁斯港面临严重的水质问题。

在那一时期,该港经历了4次大范围的鱼类死亡事件,这促进了对港湾水质的深入研究。

于是,一项对溶解氧和水质的研究显示,曝气增加的氧与硫化氢反映而使之减少。

曝气后硫化氢浓度只是曝气前的1/2〜1/ 3。

而且,随着曝气的进行,硫化氢的存在时间从曝气前的超过40天减少到不超过20天。

(5)北京清河。

1990年,为保证亚运会的顺利进行,在北京清河的一个长约4 km的河段中放置了8台11kW(15马力)的美国Aire-〇2曝气设备,利用叶轮吸气推流式曝气系统进行人工充氧,在1990年8月26至9月29日运行,基本消除了曝气河段的臭味,B0D5去除率约为60%,CODcr去除率约80%,NH3-N去除率达45%,曝气区的DO从0上升到5〜7mg/L,曝气区邻近区域的DO上升到4〜5mg/L。

(6)上海上澳塘,上海市徐汇区环保局于1996年对上澳塘潘家桥河段应用鼓风机-微孔布气管曝气系统进行了人工充氧试验经过一个月的曝气,河流水质得到很大改善,BOD5去除率为56.4%^72.5%,CODcr去除率为48.5%〜61%。

在试验的基础上,徐汇区环保局于1998年在徐汇区东上澳塘实施了河道曝气复氧工程(图6-5)。

(7)上海苏州河。

上海苏州河是一条遭受严重污染的河流,河水黑臭,平均DO<0.5mg/L,COD高达100^200mg/L。

在德国Messer集团的协助下,上海环境科学研究院在苏州河支流新泾港下游进行了BIOX工艺的现场中试。

相关主题