《例题力学》典型例题例题1:如图所示,质量为m =5 kg 、底面积为S =40 cm ×60 cm 的矩形平板,以U =1 m/s 的速度沿着与水平面成倾角θ=30的斜面作等速下滑运动。
已知平板与斜面之间的油层厚度δ=1 mm ,假设由平板所带动的油层的运动速度呈线性分布。
求油的动力粘性系数。
解:由牛顿摩擦定律,平板所受的剪切应力du U dy τμμδ== 又因等速运动,惯性力为零。
根据牛顿第二定律:0m ==∑F a ,即:gsin 0m S θτ-⋅=()324gsin 59.8sin 301100.1021N s m 1406010m U S θδμ--⋅⨯⨯⨯⨯==≈⋅⋅⨯⨯⨯ 例题2:如图所示,转轴的直径d =0.36 m 、轴承的长度l =1 m ,轴与轴承的缝隙宽度δ=0.23 mm ,缝隙中充满动力粘性系数0.73Pa s μ=⋅的油,若轴的转速200rpm n =。
求克服油的粘性阻力所消耗的功率。
解:由牛顿摩擦定律,轴与轴承之间的剪切应力()60d d n d uy πτμμδ== 粘性阻力(摩擦力):F S dl ττπ=⋅= 克服油的粘性阻力所消耗的功率:()()3223223230230603.140.360.732001600.231050938.83(W)d d n d n n lP M F dl πππμωτπδ-==⋅⋅=⨯⨯=⨯⨯⨯=⨯⨯=例题3:如图所示,直径为d 的两个圆盘相互平行,间隙中的液体动力黏度系数为μ,若下盘固定不动,上盘以恒定角速度ω旋转,此时所需力矩为T ,求间隙厚度δ的表达式。
解:根据牛顿黏性定律 d d 2d r r F A r r ωωμμπδδ==2d d 2d r T F r r r ωμπδ=⋅=42420d d 232d d d T T r r πμωπμωδδ===⎰432d Tπμωδ=例题4:如图所示的双U 型管,用来测定比水小的液体的密度,试用液柱高差来确定未知液体的密度ρ(取管中水的密度ρ水=1000 kg/m 3)。
水解:根据等压面的性质,采用相对压强可得:()()()123243g g g h h h h h h ρρρ---=-水水123432h h h h h h ρρ-+-=-水例题5:如图所示,U 型管中水银面的高差h =0.32 m ,其他流体为水。
容器A 和容器B 中心的位置高差z =1 m 。
求A 、B 两容器中心处的压强差(取管中水的重度γ水=9810 N/m 3,水银的重度γ水银=133416 N/m 3)。
解:根据等压面的性质可得:A 11p p h γ=+水,12p p h γ=+水银,B 22p p h γ=+水()()()()A B 211334160.3298100.32129743.92Pa p p h h h h h z γγγγ-=--=-+=⨯-⨯+=水银水水银水例题6:如图所示,仅在重力场作用下的无盖水箱高H =1.2m ,长L =3m ,静止时盛水深度h =0.9m 。
现水箱以20.98m a =的加速度沿水平方向做直线运动。
若取水的密度31000kg m ρ=,水箱中自由水面的压强0p =98000Pa 。
试求: (1)水箱中自由水面的方程和水箱中的压强分布。
(2)水箱中的水不致溢出时的最大加速度max a 。
解:(1)如图所示,将固定在水箱上的运动坐标系的原点置于静止时自由水面的中点,z 轴垂直向上,x 轴与加速度的方向一致。
则水箱运动时单位质量水受到的质量力和水的加速度分量分别为0X a,Y ,Z g =-==-代入非惯性坐标系中的压力全微分公式()d d d d d p X x Y y Z z W ρρ=++=,得()d d d p a x g z ρ=-+ ①积分得 ()1p ax gz c ρ=-++利用边界条件确定积分常数1c :在坐标原点O (0x z ==)处,0p p =,得10c p =由式①可得水箱的压强分布()()098000100009898980009809800p p ax gz .x .z x z ρ=-+=-+=-- 对于水箱中的等压面,有d 0p =,所以由式①可得等压面的微分方程d d a x g z =-积分得 2az x c g=-+上式给出了一簇斜率为a g -的倾斜平面,就代表水箱加速运动的一簇等压面,自由水面是等压面中的一个,因自由水面通过坐标原点,可确定积分常数20c =。
因此自由水面方程为0980198a .z x x .x g .=-=-=- (2)假设水箱以加速度max a 运动时,其中的水刚好没有溢出,且此时水箱右侧水的深度为h ',则根据加速前后水的体积不变的性质可得()2h H LL h '+⋅⋅=②又根据水箱作水平等加速直线运动时,自由表面的斜率与几何长度之间的关系max g a H h L'-= ③②和③式联立求解,得:()()()2max22 1.20.9g 9.8 1.96m s 3H h a L -⨯-==⨯=例题7:有一盛水的旋转圆筒,直径D =1 m ,高H =2 m ,静止时水深为h =1.5 m 。
求: (1)为使水不从筒边溢出,旋转角速度ω应控制在多大?(2)当ω=6 rad/s 时,筒底G 、C 点处的相对压强(相对于自由水面)分别为多少?C解:(1)若将坐标原点放在筒底的中心位置,并假设自由表面最低点的高度为00,r z H ==,则由:()22,,d d d d X x Y y Z gp X x Y y Z z ωωρ⎧===-⎪⎨=++⎪⎩,可推出自由水面(为一等压面)的方程:2202g r z H ω=+ 根据在水没有溢出的情况下,旋转前后水的体积不变的性质,可得:2222002d 2g 4D r D r H r h ωππ⎛⎫⋅+=⎪⎝⎭⎰由此可求得:22016gD H h ω=-,带入自由表面方程得:2222g 8D z h r ω⎛⎫=+- ⎪⎝⎭若使ω达到某一最大值而水不溢出,则有2r D =时,z H =,带入上式,得()8.854rad s ω===(2)旋转容器中任意一点的相对压强可表达为2222220g g 2g 2g 16g r r D p H z h z ωωωρρ⎛⎫⎛⎫=+-=+-- ⎪ ⎪⎝⎭⎝⎭将G 点条件:0,0r z ==带入得:2222G 61g 10009.8 1.512450Pa 16g 169.8D p h ωρ⎛⎫⎛⎫⨯=-=⨯⨯-= ⎪ ⎪⨯⎝⎭⎝⎭同理,将C 点条件:2,0r D z ==带入得:222222C 61g10009.8 1.516950Pa 8g 16g 169.8D D p h ωωρ⎛⎫⎛⎫⨯=+-=⨯⨯+= ⎪ ⎪⨯⎝⎭⎝⎭例题8:如图所示为一圆柱形容器,直径为300mm d =,高500mm H =,容器装水,水深为1300mm h =,使容器绕垂直轴做等角速旋转,试确定水正好不溢出来的转速1n 。
解:以自由液面的最低处为坐标原点,自由液面方程为H gd gr z ===822222ωω旋转后无水的体积为:()2224222102d 2d 2644dd r d V z r r r r d H h ggωωππππ=⨯=⨯==-⎰⎰14187g(H h ).d ω⇒=-= ()rad s 1301783n .ωπ⇒== ()r min例9 已知平面直角坐标系中的二维速度场()()x t y t =+++u i j 。
试求: (1)迹线方程;d d d d x y z x y z t u u u === (2)流线方程;d d d x y zx y z u u u == (3)0t =时刻,通过(1,1)点的流体微团运动的加速度; (4)涡量,并判断流动是否有旋。
解:(1)将,x y u x t u y t =+=+代入迹线方程d d d d x y x yu ,u t t==得: d d d d x y x t,y t t t=+=+ 解这个微分方程得迹线的参数方程:1,1t t x ae t y be t =--=--其中,,a b 是积分常数(拉格朗日变数)。
消掉时间t ,并给定,a b 即可得到以,x y 表示的流体质点(),a b 的迹线方程。
例如:已知欧拉法表示的速度场22x y =-u i j ,求流体质点的迹线方程,并说明迹线形状。
将2,2x y u x u y ==代入迹线微分方程:d d d d x y x y u ,u t t ==,得: d d 22d d x y x,y t t == 分离变量并积分,得: 12ln 2ln 2x t c y t c =+⎧⎨=-+⎩从上两式中消去时间t 得迹线方程: 12xy c c =+ 即: xy c = 可见,该流场中流体质点的迹线为一双曲线。
(2)将,x y u x t u y t =+=+代入流线微分方程d d x y x y u u =得:d d x y x t y t=++ 将t 看成常数,积分上式得流线方程:()()ln ln ln x t y t c +=++ 或 ()()x t c y t +=+(3)由质点导数的定义可得流动在x 和y 方向的加速度分量分别为:D D x x x x x x y u u u ua u u t t x y∂∂∂==++∂∂∂()()110x t y t =++⨯++⨯1x t =++ D D y y y y y xyu u u u a u u ttxy∂∂∂==++∂∂∂()()101x t y t =++⨯++⨯1y t =++所以,0t =时刻,通过(1,1)点的流体微团运动的加速度为:()()D 1122D x x a a x t y t t==+=+++++=+ua i j i j i j (4)由涡量的定义,对于题中所给的平面流动有:0y x z u u x y Ω∂∂=∇⨯==-=∂∂⎛⎫⎪⎝⎭Ωu k k所以流动无旋。
例10 已知二维速度场为4x u x y =-,4y u y x =--。
(教材P68) (1)证明该速度分布可以表示不可压缩流体的平面流动; (2)求该二维流场的流函数; (3)证明该流动为势流; (4)求速度势函数。
解:(1)平面流动判定不可压缩流体平面流动的连续方程为0yx u u x y∂∂+=∂∂ 由已知条件可求()41x u x y x x∂∂=-=∂∂,()41y u y x y y ∂∂=--=-∂∂,可见速度分布满足连续方程。
故可以表示不可压缩流体的平面运动。
(2)流函数(,)x y ψ的确定 按流函数定义和已知条件有4x u x y yψ∂==-∂ (1) ()4y u y x xψ∂=-=-+∂ (2) 积分式(1)得 2d ()2()y f x xy y f x yψψ∂=+=-+∂⎰(3) 为确定函数)(x f ,将式(3)对x 求偏导,并按流函数定义令其等于y u -,即()4y y f x u y x xψ∂'=+=-=+∂ (4) 由式(4)可以判定x x f 4)(=',积分求)(x f 得c x x x x x f x f +=='=⎰⎰22d 4d )()( (5)其中c 为积分常数。