高中物理必修3物理 全册全单元精选测试卷练习(Word 版 含答案)一、必修第3册 静电场及其应用解答题易错题培优(难)1.如图所示,在光滑绝缘水平面上B 点的正上方O 处固定一个质点,在水平面上的A 点放另一个质点,两个质点的质量均为m ,带电量均为+Q 。
C 为AB 直线上的另一点(O 、A 、B 、C 位于同一竖直平面上),AO 间的距离为L ,AB 和BC 间的距离均为2L,在空间加一个水平方向的匀强电场后A 处的质点处于静止。
试问: (1)该匀强电场的场强多大?其方向如何?(2)给A 处的质点一个指向C 点的初速度,该质点到达B 点时所受的电场力多大? (3)若初速度大小为v 0,质点到达C 点时的加速度和速度分别多大?【答案】(1)22kQ L ,方向由A 指向C ;273kQ ;(3)22kQ mL 220kQ v mL+【解析】 【分析】(1)在空间加一个水平方向的匀强电场后A 处的质点处于静止,对A 进行受力分析,根据平衡条件求解。
(2)质点到达B 点时受竖直向下的O 点的库仑力和水平向右的电场力,根据力的合成求解 (3)根据牛顿第二定律求出加速度,根据动能定理求出C 点时速度。
【详解】(1)在空间加一个水平方向的匀强电场后A 处的质点处于静止,对A 进行受力分析,AO 间的库仑力为22Q F K L=;根据平衡条件得:sin F EQ θ= 2sin 2F KQE Q Lθ== 方向由A 指向C(2)该质点到达B 点时受竖直向下的O 点的库仑力和水平向右的电场力,库仑力为22'(sin60)Q F K L =;水平向右的电场力F EQ "=B点时所受的电场力22222273()[](sin60)6kQ kQ F EQ L L=+= (3)质点到达C 点时进行受力分析,根据牛顿第二定律得2222sin Q K EQ F KQ L a m m mL θ+===合. 从A 点到C 点根据动能定理得221122o EQL mv mv =-; 22kQ v mLυ=+ 【点睛】本题的关键要耐心细致地分析物体的运动过程,对物体进行受力分析,运用动能定理、牛顿第二定律进行处理。
2.竖直放置的平行金属板A 、B 带等量异种电荷(如图),两板之间形成的电场是匀强电场.板间用绝缘细线悬挂着的小球质量m=4.0×10-5kg ,带电荷量q=3.0×10-7C ,平衡时细线与竖直方向之间的夹角α=37°.求:(1)A 、B 之间匀强电场的场强多大?(2)若剪断细线,计算小球运动的加速度,小球在A 、B 板间将如何运动? 【答案】(1)E =1×103N/C (2) 12.5m/s 2 【解析】 【详解】(1)小球受到重力mg 、电场力F 和绳的拉力T 的作用,由共点力平衡条件有:F =qE =mg tan α解得:537tan 410100.75 1.010N/C 310mg E q α--⨯⨯⨯===⨯⨯ 匀强电场的电场强度的方向与电场力的方向相同,即水平向右;(2)剪断细线后,小球做偏离竖直方向,夹角为37°匀加速直线运动,设其加速度为a 由牛顿第二定律有:cos mgma θ= 解得:cos θ【点睛】本题是带电体在电场中平衡问题,分析受力情况是解题的关键,并能根据受力情况判断此后小球的运动情况.3.如图所示,在沿水平方向的匀强电场中,有一长度l =0. 5m 的绝缘轻绳上端固定在O点,下端系一质量21010m .-=⨯kg 、带电量82.010q -=⨯C 的小球(小球的大小可以忽略)在位置B 点处于静止状态,此时轻绳与竖直方向的夹角α=37°,空气阻力不计,sin37°=0. 6,cos37°=0. 8,g =10m/s 2. (1)求该电场场强大小;(2)在始终垂直于轻绳的外力作用下将小球从B 位置缓慢拉动到细绳竖直位置的A 点,求外力对带电小球做的功;(3)过B 点做一等势面交电场线于C 点(C 点未画出),使轻绳与竖直方向的夹角增大少许(不超过5°),再由静止释放,求小球从C 点第一次运动到B 点的时间,并写出分析求解过程.【答案】(1) 63.7510E =⨯N/C (2)21.2510F W J -=⨯ (3)0.31t s =【解析】 【详解】(1)带电小球静止,受到合力等于零,电场力与重力的关系是:tan Eq mg α=,即tan mgE qα=代入数值计算得电场场强大小:63.7510/E N C =⨯(2)小球在外力作用下从B 位置缓慢移动到A 位置过程中,根据动能定理有:sin (cos )0F W Eql mg l l αα-+-=所以sin tan (cos )F mgW q mg l l qααα=-- 代入数值解得电场场强大小:21.2510F W J -=⨯(3)分析受力可知:小球在运动过程中,重力和电场力的合力为恒力,大小为cos 4α类比研究单摆的方法可知,小球的运动与单摆类似,回复力由上述合力沿圆周切向的分力提供。
因为从C 到B 的角度θ很小,进一步可知回复力与相对平衡位置的位移大小成正比、方向相反,故小球的运动为简谐运动。
小球的运动可等效为在某个场强大小为54g mg '=,方向与竖直方向成α角斜向右下的场中做简谐运动,其周期为225/4l l T g g ππ==' 故从C 到B 最短的时间10.10.314t T s π===4.—个带正电的微粒,从A 点射入水平方向的匀强电场中,微粒沿直线AB 运动,如图所示,AB 与电场线夹角θ=53°,已知带电微粒的质量m =1.0×10-7kg ,电荷量q =1.0×10-10C ,A 、B 相距L =20cm .(取g =10m/s 2).求:(1)电场强度的大小和方向;(2)要使微粒从A 点运动到B 点,微粒射入电场时的最小速度是多少. 【答案】(1)7.5×10 3 V/m,方向水平向左 (2)5m/s 【解析】 【详解】(1)带电微粒做直线运动,所受的合力与速度在同一直线上,则带电微粒受力如图所示;由图可知,合力与速度方向相反;故粒子一定做匀减速直线运动; 由力的合成可知:mg =qE •tan θ可得:37.510V/m tan mgE q θ==⨯,方向水平向左. (2)微粒从A 到B 做匀减速直线运动,则当v B =0时,粒子进入电场速度v A 最小.由动能定理:21sin cos 02A mgL qEL mv θθ--=-代入数据得:v A =5m/s5.如图,在空间中水平面MN 的下方存在竖直向下的匀强电场,质量为m 的带电小球由MN 上方H 处的A 点以初速度v 水平抛出,从B 点进入电场,到达C 点时速度方向恰好水平,A 、B 、C 三点在同一直线上,且AB =2BC ,求:(1)A 、B 两点间的距离(2)带电小球在电场中所受的电场力【答案】2228v H H +mg【解析】 【详解】(1)小球在MN 上方做平抛运动竖直方向:212H gt = 水平方向:x vt =A 、B 两点间的距离22L H x =+联立以上各式解得222v HL H g=+ (2)带电小球进入电场后水平方向做匀速直线运动,竖直方向做匀减速直线运动,对带电小球运动的全过程,由动能定理得:()022H Hmg H F +-⋅= 解得F =3mg6.在竖直平面内固定一半径为R=0.3m 的金属细圆环,质量为5m 310kg -=⨯的金属小球(视为质点)通过长为L=0.5m 的绝缘细线悬挂在圆环的最高点.小球带电荷量为62.510q C -=⨯时,发现小球在垂直圆环平面的对称轴上某点A 处于平衡状态,如图所示.已知静电力常量9229.010?/k N m C =⨯. 求:(1)细线的拉力F 的大小;(2)小球所在处的电场强度E 的大小?(3)金属细圆环不能等效成点电荷来处理,试应用微元法推导圆环带电量Q 表达式?(用字母R 、L 、k 、E 表示)【答案】(1) 4510N -⨯ (2) 160/N C (3) 254EL Q k =或322Q k L R=- 【解析】由几何关系:3cos 5R L θ==,224sin 5L R L θ-==,4tan 3θ= ①(1)对小球受力分析可知:cos mgF θ=② 由①②得:4510F N -=⨯ ③ (2)由平衡条件可得:tan qE mg θ= ④ 由①④得:160/E N C = ⑤ (3)由微元法,无限划分,设每一极小段圆环带电量为q ∆ 则:2sin qk E Lθ∆=∑ ⑥其中:q Q ∑∆= 由①⑥得:254EL Q k =或322Q k L R=- ⑦ 点睛:因2QE kr=只能适用于真空中的点电荷,故本题采用了微元法求得圆环在小球位置的场强,应注意体会该方法的使用.库仑力的考查一般都是结合共点力的平衡进行的,应注意正确进行受力分析.二、必修第3册 静电场中的能量解答题易错题培优(难)7.如图甲所示,极板A 、B 间电压为U 0,极板C 、D 间距为d ,荧光屏到C 、D 板右端的距离等于C 、D 板的板长.A 板O 处的放射源连续无初速地释放质量为m 、电荷量为+q 的粒子,经电场加速后,沿极板C 、D 的中心线射向荧光屏(荧光屏足够大且与中心线垂直),当C 、D 板间未加电压时,粒子通过两板间的时间为t 0;当C 、D 板间加上图乙所示电压(图中电压U 1已知)时,粒子均能从C 、D 两板间飞出,不计粒子的重力及相互间的作用.求:(1)C 、D 板的长度L ;(2)粒子从C 、D 板间飞出时垂直于极板方向偏移的最大距离; (3)粒子打在荧光屏上区域的长度. 【答案】(1)02qU L t m =2)2102qU t y md =(3)21032qU t s s md∆== 【解析】试题分析:(1)粒子在A 、B 板间有20012qU mv = 在C 、D 板间有00L v t = 解得:02qU L t m=(2)粒子从nt 0(n=0、2、4……)时刻进入C 、D 间,偏移距离最大 粒子做类平抛运动 偏移距离2012y at = 加速度1qU a md=得:2102qU t y md=(3)粒子在C 、D 间偏转距离最大时打在荧光屏上距中心线最远ZXXK] 出C 、D 板偏转角0tan y v v θ=0y v at =打在荧光屏上距中心线最远距离tan s y L θ=+荧光屏上区域长度21032qU t s s md∆==考点:带电粒子在匀强电场中的运动【名师点睛】此题是带电粒子在匀强电场中的运动问题;关键是知道粒子在水平及竖直方向的运动规律和特点,结合平抛运动的规律解答.8.如图所示,在直角坐标系xoy 的第一象限中,存在竖直向下的匀强电场,电场强度大小为4E 0,虚线是电场的理想边界线,虚线右端与x 轴的交点为A ,A 点坐标为(L 、0),虚线与x 轴所围成的空间内没有电场;在第二象限存在水平向右的匀强电场.电场强度大小为E 0.()M L L -、和()0N L -、两点的连线上有一个产生粒子的发生器装置,产生质量均为m ,电荷量均为q 静止的带正电的粒子,不计粒子的重力和粒子之间的相互作用,且整个装置处于真空中.已知从MN 上静止释放的所有粒子,最后都能到达A 点:(1)若粒子从M 点由静止开始运动,进入第一象限后始终在电场中运动并恰好到达A 点,求到达A 点的速度大小;(2)若粒子从MN 上的中点由静止开始运动,求该粒子从释放点运动到A 点的时间; (3)求第一象限的电场边界线(图中虚线)方程. 【答案】(1)010qE L v m=2)0322mL t qE =3)22()y Lx x L =-(0)x L ≤≤【解析】试题分析:(1)由动能定理:200142qE L qE L mv +=,得:010qE Lv m= (2)分析水平方向的运动:粒子先匀加速位移L ,再匀速位移L 到第一象限的速度20012qE L mv =,匀加速时间102L t v =,匀速时间20L t v =,则总时间120322mL t t t qE =+=(3)设粒子从MN 线上某点由静止释放,经第一象限电场边界交点(,)Q x y ,后做匀速直线运动到A 点,在第一象限做类平抛运动,水平:0x v t =,竖直方向:212h at =反向延长AQ 与水平位移交点为其中点,还有以下几何关系:201()22x a v yx L x=-, 且202v a L =',003/4/qE m a a qE m'== 推出边界方程:22()y Lx x L=-(0)x L ≤≤ 考点:本题考查了带电粒子在电场中的运动、类平抛运动、运动的分解、动能定理.9.如图所示,真空室中电极K 发出的电子(初速度不计)经过电势差为U 1的加速电场加速后,沿两水平金属板C 、D 间的中心线射入两板间的偏转电场,电子离开偏转电极时速度方向与水平方向成45°,最后打在荧光屏上,已知电子的质量为m 、电荷量为e ,C 、D 极板长为l ,D 板的电势比C 板的电势高,极板间距离为d ,荧光屏距C 、D 右端的距离为16.电子重力不计.求:(1)电子通过偏转电场的时间t 0; (2)偏转电极C 、D 间的电压U 2; (3)电子到达荧光屏离O 点的距离Y . 【答案】(1)12m eU (2)12d U l (3)23l 【解析】 【分析】 【详解】(1)电子在离开B 板时的速度为v ,根据动能定理可得:2112eU mv =得:12eU v m=电子进入偏转电场水平方向做匀速直线运动,则有:012l m t l v eU == (2)电子在偏转电极中的加速度:1eU a md=离开电场时竖直方向的速度:2012y U l ev at dmU == 离开电场轨迹如图所示:电子的速度与水平方向的夹角:21tan 45?=2y v U lvdU =解得:122dU U l=(3)离开电场的侧向位移:21012y at = 解得:12l y =电子离开电场后,沿竖直方向的位移:2tan 45=66l l y =︒ 电子到达荧光屏离O 点的距离:1223Y y y l =+= 【点睛】本题考查带电粒子在电场中的运动,要注意明确带电粒子的运动可分加速和偏转两类,加速一般采用动能定理求解,而偏转采用的方法是运动的合成和分解.10.两块水平平行放置的导体板如图 (甲)所示,大量电子(质量m 、电量e )由静止开始,经电压为U 0的电场加速后,连续不断地沿平行板的方向从两板正中间射入两板之间.当两板均不带电时,这些电子通过两板之间的时间为3t 0;当在两板间加如图 (乙)所示的周期为2t 0,幅值恒为U 0的周期性电压时,恰好能使所有电子均从两板间通过.问:⑴这些电子通过两板之间后,侧向位移(沿垂直于两板方向上的位移)的最大值和最小值分别是多少?⑵侧向位移分别为最大值和最小值的情况下,电子在刚穿出两板之间时的动能之比为多少?【答案】(1)0062t eUm,0064t eUm(2)1613【解析】画出电子在t=0时和t=t0时进入电场的v–t图象进行分析(1)竖直方向的分速度010yeUv tmd=,0002022=yeU eU tv tmd md=侧向最大位移200max101010312()322y y y yeU t ds v t v t v tmd=+===侧向最小位移200min101010311.5224y y y yeU t ds v t v t v tmd=+===解得06eUd tm=所以00max622yt eUdsm=00min644yt eUdsm=(2)由此得220010()6yeU eUv tmd m==,2200202(2)3yeU eUv tmd m==而202eUvm=所以2202kmax0022kmin000111/3162211/121322yymv mvE eU eUE eU eUmv mv++===++【名师点睛】解决本题的关键知道粒子在偏转电场中水平方向上一直做匀速直线运动,在竖直方向上有电场时做匀加速直线运动,无电场时做匀速直线运动或静止.11.如图所示,在竖直平面内有一固定的光滑绝缘轨道,圆心为O ,半径为r ,A 、B 、C 、D 分别是圆周上的点,其中A 、C 分别是最高点和最低点,BD 连线与水平方向夹角为37︒。