煤基直接还原炼铁技术及非高炉炼铁能耗分析摘要:非高炉炼铁技术或称非焦炼铁技术是当今钢铁生产工艺中最受关注的技术之一。
依产品的形态不同,非高炉炼铁技术可分为熔融还原与直接还原两种工艺方法。
直接还原是以非焦煤为能源,在不熔化不造渣的条件下,原料保持原有物理形态,铁的氧化物经还原获得以金属铁为主要成分的固态产品的技术方法。
直接还原炼铁工艺分为气基直接还原和煤基直接还原,气基直接还原炼铁工艺是最主要的直接还原炼铁技术,其产量占到直接还原炼铁的90%左右,煤基直接还原炼铁,目前以回转窑为主,也是最主要的煤基直接还原炼铁工艺。
关键词:非高炉炼铁;直接还原;熔融还原;煤基;气基近代高炉已有数百年历史,其工艺已达到相当完善的地步。
高炉反应器的优点是热效率高、技术完善,设备已大型化、长寿化,单座高炉年产铁最高可达400 万t左右,一代炉役的产铁量可达5000万t以上,可以说,没有现代化的大型高炉就没有现代化的钢铁工业大生产。
但是在它日益完善和大型化的同时,也带来了流程长、投资大以及污染环境等问题。
高炉工艺流程存在以下问题:一是高炉必须要用较多焦炭,而炼焦煤越来越少,焦炭越来越贵;二是环境污染严重,特别是焦炉的水污染物粉尘排放烧结的SO2粉尘排放,高炉的CO2排放很高;三是传统炼铁流程长,投资大;四是从铁、烧、焦全系统看重复加热、降温,增碳、脱碳,资源、能源循环使用率低,热能利用不合理。
高炉法虽然仍是当今炼铁生产的主体流程,但非高炉炼铁法已成为炼铁技术发展的方向。
非高炉炼铁技术或称非焦炼铁技术是当今钢铁生产工艺中最受关注的技术之一。
依产品的形态不同,非高炉炼铁技术可分为熔融还原与直接还原两种工艺方法。
随着世界上废钢铁积累日益减少,电炉流程迅速发展,这就要求采用直接还原新工艺,生产出的海绵铁供电炉炼钢。
此外,由于炼焦煤资源日渐短缺,焦炉逐渐老化以及人们对焦炉污染日益关注,八十年代以来,各发达国家纷纷谋求开发另外的无焦炼铁工艺——熔融还原,其中Corex流程已实现工业化生产。
综合起来看,当前炼铁工艺正朝着少焦或无焦炼铁方向发展,而直接还原与熔融还原技术正适合这种发展方向。
所以说我国应适度发展直接还原与熔融还原技术。
直接还原是以非焦煤为能源,在不熔化不造渣的条件下,原料保持原有物理形态,铁的氧化物经还原获得以金属铁为主要成分的固态产品的技术方法。
熔融还原是以非焦煤为能源,铁矿物在高温熔融状态下完成还原过程,获得液态铁水的技术方法。
由于优质废钢资源的短缺,海绵铁作为电炉钢重要的原料之一受到重视与发展。
直接还原炼铁工艺分为气基直接还原和煤基直接还原,气基直接还原炼铁工艺是最主要的直接还原炼铁技术,其产量占到直接还原炼铁的90%左右,气基直接还原炼铁使用天然气重整制备高质量的富氢气体(75%H2~25%CO)作为还原剂,以竖炉作为还原反应器,气固充分接触,还原反应与热量交换好,因此,反应器效率高,吨铁能耗低。
由于我国的天然气资源短缺,难以用于生产海绵铁。
直接还原的产品直接还原铁(DRD是铁氧化物在不熔化、不造渣且在固态下还原生成的金属铁产品。
为提高产品的抗氧化能力和体积密度, DRI热态下挤压成形的产品称为热压块( HBI) , DRI冷态下挤压成形的产品称为DRI压块。
煤基直接还原炼铁,目前以回转窑为主,也是最主要的煤基直接还原炼铁工艺,另外还存在隧道窑直接还原炼铁工艺,近年来,以处理钢铁厂废弃物的转底炉工艺,我国也在尝试变成直接还原炼铁工艺。
1 煤基直接还原炼铁的几种工艺1.1 回转窑工艺目前,在全世界的煤基直接还原炼铁工艺中,回转窑流程约占煤基直接还原炼铁总产量的95%以上。
回转窑工艺有三种,分为一步法、二步法和冷固结球团法。
“一步法”是指把细磨铁精矿造球,在链篦机上经干燥、900 ℃预热,直接送入回转窑进行固结和还原,所有工序在一条流水线上连续完成。
“二步法”是将上述工艺过程分两步来完成,即先把铁精矿造球,经1300℃高温氧化焙烧,制成氧化球团;然后再将氧化球团送入回转窑进行还原;两个工艺可以分别在两地独立进行,故称“二步法”。
冷固结球团法是在磁铁矿精粉中加入少量特制的复合型粘合剂造球,在200℃左右干燥固结,然后送入回转窑进行还原,省去了高温焙烧氧化固结过程。
回转窑法最著名的为SL-RN流程,是由SL流程和RN流程结合而成的。
开发者为加拿大的Steel Co Ltd、德国的Lurgi A. G.、美国的Republic Steel有限公司和National Lead公司,S、L、R、N 即这四个开发者的首字母。
该流程于1954 年开发完成,在1969 年实现工业化,在澳大利亚建成第一座30mSL-RN工业回转窑,之后得到了较快的发展。
1.2 隧道窑工艺隧道窑法是由E·Sieurin于1908年发明的。
它使用外热式反应罐和隧道窑,窑体可分为加热、还原和冷却三个区域。
在还原段装有燃烧器,以液体或气体燃料为能源使还原段温度保持在1200℃左右,还原段高温炉气向加热段流动,对反应罐进行预热,使其温度随着向还原段的逐渐接近而逐步提高。
台车进入还原段后,煤气化反应放出大量CO,使矿粉得到还原,生成海绵铁。
还原完成后,台车进入冷却段,冷却段中有一股由吸入的冷空气形成的气流,在气流中,密封的反应罐逐步冷却至常温。
出窑后,将海绵铁取出,去掉残煤和灰分即可得到产品。
该工艺可用于生产粉末冶金用铁粉和海绵铁。
反应罐的材质多为SiC或黏土,SiC 罐耐用,导热性好,成本较高;黏土罐造价低,但性能较差。
反应罐内矿粉和还原剂分层装入罐内,还原剂采用煤粉,混入石灰石粉作为脱硫剂。
隧道窑生产工艺的特点:(1)原料、还原剂、燃料容易解决;(2)生产工艺易掌握,生产过程易控制;(3)设备运行稳定,产品质量均匀。
窑炉是海绵铁生产的关键设备。
2004 年之前,我国部分海绵铁生产厂家从倒焰窑改为煤烧隧道窑,使还原工段设备档次上升了一个台阶。
但煤烧隧道窑存在环境污染、能耗高等问题,根据国家的环保政策,隧道窑煤气化已势在必行,2005年开始,我国新上的海绵铁项目绝大部分采用了煤气,加之国家行业管理部门提倡鼓励新上长窑、大窑,以形成规模经济、降低能耗和提高经济效益,在这种背景下,新一代大型煤气隧道窑应运而生。
煤基隧道窑还原主要用于生产高纯铁粉,金属化率要求大于95%,因此,造成特殊的布料方式(环行布料),传统煤基隧道窑还原窑内温度控制在1180 ~1200℃,吨铁煤耗高达1500kg,罐材寿命短、冶炼周期长(约40~50 h,包括预热、加热与冷却段)。
1.3 转底炉技术1.3.1 Fastmet 工艺转底炉起源于环形加热炉,原用于轧钢钢坯的加热,近年来被移植用于钢铁厂粉尘的处理,进而演化成炼铁设施。
转底炉可用于生产金属化球团矿,为钢铁公司处理粉尘。
Fastmet 流程主体设备是转底炉。
转底炉呈密封的圆盘状,炉底在运行中以垂线为轴作旋转运动。
两侧炉壁上设有燃烧器为炉内提供所需热量。
利用粉状还原剂和粘结剂与铁精矿混合均匀制成球团,经干燥后送入转底炉,均匀地铺放于旋转的炉底上。
随着炉底的旋转,含碳球团被加热到1250~1350 ℃,经过10~20 min的还原得到海绵铁。
海绵铁通过出料螺旋连续排出炉外,温度约为1000 ℃。
根据需要,可将出炉后的海绵铁热压成块或使用圆筒冷却机冷却,也可热装入熔炼炉处理成铁水(Fastmet和熔炼联合被称为Fastmelt 工艺)。
燃料(天然气、油、煤)和预热空气通过烧嘴进入炉内燃烧(包括还原气相产物CO 的燃烧),产生还原所需的足够温度和热量。
燃烧废气逆向流动,最后从加料口的排气口排出,经二次燃烧、热交换和洗涤除尘后从烟囱排出。
Fastmet 的基本还原原理是将燃烧着的火焰的高温经炉壁通过辐射传给料层,使含碳球团中的铁矿粉在高温下被其中的碳/挥发分还原。
含碳球团的还原过程比较复杂,因为煤不仅作为固体还原剂,而且其挥发分具有气体还原剂的特点。
挥发分中含有的少量H2和CO 可以直接作为还原剂,大部分的碳氢化合物裂解后生成的H2 和C也可作为还原剂。
在研究含碳球团的还原时,重点都集中在碳的还原作用上,往往忽略了挥发分的还原作用。
试验结果证明,随温度的升高,含碳球团的还原过程应该包括三部分:挥发分的热解;铁氧化物被挥发分中CO 和H2以及其裂解产物H2 和C还原;铁氧化物被碳还原。
此方法可应用于以下几个方面。
(1)用铁精粉生产DRI或HBI将铁精粉与煤粉混合压球后加入转底炉,球团在炉内受控的还原气氛中被加热。
当达到反应温度时,铁氧化物被还原为金属铁。
反应所需的热能全部由煤提供。
从转底炉出来的海绵铁带有较多显热,可采用热压块工艺加工为热压块铁,以便运输与存储。
该法生产的热压块铁TFe含量达92%,金属化率高达95%,C含量约4%,脉石含量约2.4%,S含量仅为0.04%,可见其品质纯净,脉石与硫等杂质含量很低,可作为优质废钢的理想替代品。
而且与废钢相比,其质量均匀稳定,波动小,对于炼钢生产极为有利。
(2)回收电炉除尘灰与轧钢铁鳞电炉除尘灰与轧钢铁鳞的特点是含有较多非铁金属的氧化物,如锌、铅、镉等,被美国环保部门定为有害物质,称作KO61。
在干铁法工艺处理过程中,这些非铁氧化物将以气态逸出,并在后续的烟气处理装置中予以收集,此时KO61 已转化为提炼有价值非铁金属的原料。
转底炉中ZnO的脱除率高于95%,生成的海绵铁金属化率高达91%。
转底炉焙烧含锌粉尘时以气态逸出的非铁金属氧化物在尾气处理过程中,由布袋除尘器收集,其成分以ZnO为主,可作为提炼锌的原料使用。
(3)回收传统钢铁厂废弃物传统钢铁厂废弃物包括转炉除尘灰,轧钢铁鳞,热轧污泥,连铸氧化铁皮及高炉粉尘与污泥。
这些物质总体来说碳的含量很高,与电炉除尘灰相比,锌含量较低,而铅、镉等含量极少。
由于原料中的铁与碳含量较高,在经过转底炉焙烧后,生成的海绵铁金属化率高于90%,其尾气收尘富含ZnO,可予以回收提炼,增加收入来源。
1.3.2 ITmk3法ITmk3法这是Midrex 及其母公司神户制钢1996年9月提出的一种第三代炼铁技术。
该技术基于Fastmet工艺,利用粉矿与煤粉制成含碳球团,然后把球团装入转底加热炉内,加热到1300~1500 ℃;球团被还原和熔融,使珠铁与渣分开,珠铁中不含杂质。
冶炼过程仅用10 min,即可生产出高纯珠铁供电炉使用。
ITmk3 技术适用于多种类型的铁矿和煤种,可利用铁粉矿和低品位含铁原料(磁铁矿、赤铁矿或含铁粉尘)一步处理生产出直径10~20 mm 的优质珠铁,取消焦炉和烧结装置,使投资成本降低。
ITmk3法在中试阶段,曾用多种铁氧化物生产出珠铁;可用煤粉、石油焦、焦粉或其他固体的、液体的或气体的还原剂。