当前位置:文档之家› 热分析谱图综合解析

热分析谱图综合解析

Td(0):加热失重的 起始温度
稳定剂有时间限制,超过1000min失效。
Weight (wt%)
100.0
99.5
PP sample
250C
加稳定剂
等温TG
99.0
98.5
98.0
97.5
PP powder sample
无稳定剂
97.0
96.5 0.0 500 1000 1500 2000 2500 3000 3500 4000
热分解反应
一般化学反应的速度v与浓度、温度等有关,速度与浓 度的关系即质量作用定律:
v = k(1- )n
为失重率,1-为未失重率
某固态聚合物A热分解后生 成固态产物B和气态产物C W0: A起始重量 W∞:B的重量
样品的失重率可表示为:
W0 W W
W0 W W
(1)
由质量作用定律得到
d k(1- )n (2)
Weight (%)
100
90
80
70
12.5C/min
60
10C/min
7.5C/min
50
5C/min
2.5C/min
40
30
Nitrogen
47%
100 200 300 400 500 600 700
Temperature C
氮气中失重也分两个阶段。第一阶段也到430C,失重47% 第二阶段失重慢于第一阶段,至700C重量保持>30%
1.氧气促进降解 2.稳定剂仅在惰性环境中有效
结论
1. 聚丙烯热失重有两种主要机理:脱低聚物与降解 2. 纯PP的起始降解温度为190C 3. 恒温条件下线性降解,升温条件下降解加速 4. 氧气促进降解 5. 稳定剂的作用:
a. 使起始降解温度升高到240C b. 保证稳定时间为1000小时 c. 仅在惰性气氛中有效
ln(ß/T2 ) p lnß
10.2 10.1 10.0
9.9 9.8 9.7 9.6 9.5 9.4 9.3
1.9
3.1
3.0
2.9
2.8
ቤተ መጻሕፍቲ ባይዱ2.7
2.6
2.5
2.4
2.3
2.0
2.1
1000/Tp(K-1)
2.2
2.2
1.92
1.96
2.00
2.04
2.08
2.12
2.16
2.20
1000/Tp(K-1)
0. 288 0. 353 0. 278 0. 413 0. 467 0. 463 0. 585 0. 675 0. 783
thermal degradation loss rate, % wt./s
0.0 0.0 0.0 6.9E-7 1.4E-6 1.4E-6 2.1E-6 4.9E-6 1.0E-5
99.2
99.1
t4
99.0
T(isoth.) = 250C
89.9 0.0 100 200 300 400 500 600 700 800 900 1000
Time (min)
纯PP的等温TG结果
T(isoth.) C 161 171 181 191 201 211 221 232 251
Oligomer fraction w(n), %wt.
Ozawa法:避开了反应机理函数直接求出E值,避免了因反应机理函
数不同可能带来的误差。
Eo
R 1.052
d ln
d (1/ Tp )
根据Ozawa公式对lnβ对1/Tp作线性回归,从斜率可求出表观活化能
CraEon。e方程:固化反应级数
d(ln )
d(1/Tp )
Ea,k nR
2Tp
100 200 300 400 500 600 700
100 200 300 400 500 600 700
第一阶段在不同气氛中失重量一样、失重速率一样、 完成温度一样,机理必然一样
第二阶段因气氛的不同,失重行为完全不同,表明机 理一定与氧气有关
到 430C: 1035-1142 cm-1 for C-O-C and -S 1361 cm-1 for C-N 3407-3638 cm-1 for OH 到500C : 824 cm-1 for C-H(包括苯环上的) 1604 cm-1 for 苯环 2921-2964 cm-1 for 烷基
将和 t 值代入式(5),计 算 k 值。如得到的 k 值 为一常数,说明n = 1的 假设是正确的,该反应 为一级反应。
P
)
n1
得到下式:
exp( E ) RTP
n(1p与)n1无关,其值近似等于1,则式5-6简化为:
Ek Aexp( E )
RTP2
RTP
对该式两边取对数,得到最终的Kissinger方程:
ln TP2
ln
AR Ek
Ek RTP
式中,β ——升温速率,K/min; Tp——峰顶温度,K; A——Arrhenius指前因子,1/s; Ek——表观活化能,J/mol; R——理想气体常数,8.314 J·mol-1·K-1; f(α)——转化率α(或称作固化度)的函数。
Kissinger方法是利用微分法对热分析曲线进行动力学分析的方法,
利用热分析曲线的峰值温度Tp与升温速率β的关系。按Kissinger公式 以不同升温速率β得到DSC曲线,找出相应的峰值温度,然后对对 1/Tp作线性回归,可得到一条直线,由直线斜率求出表观活化能Ek,
从截距求得指前因子A。
Ozawa方程:反应活化能
热分析谱图综合解析
DSC TGA
DSC法固化动力学研究
固化(聚合)动力学基础
固化反应是否能够进行由固化反应的表观活化能来决定,表观活化能 的大小直观反映固化反应的难易程度。
用DSC曲线进行动力学分析,首先要遵循以下几点假设: (1)放热曲线总面积正比于固化反应总放热量。 (2)固化过程的反应速率与热流速率成正比。
-0.2
a
DGEBF PES /DDS
100
10
-0.4
b
-0.6
c
-0.8
d
-1.0
-1.2
-1.4
150
200
250
300
Temperature(℃)
不同升温速率下的DSC曲线
固化温度
固化体系
DGEBFPES/BAF
β/℃·min-1
5 10 15 20
固化温度/℃
Ti
Tp Tf
126 164 200
利用了DSC曲线的峰值温度TP与升温速率β的关系,当E/(nR)>>2Tp, 作lnβ-1/Tp线性回归,得斜率为-E/(nR),从而可以计算出反应级数。
固化体系动态DSC曲线分析
exo
Heat Flow(W/g)
0.2
a- 5 ℃/min
0.0
b-10 ℃/min
c-15 ℃/min
d-20 ℃/min
Time (min)
气氛的影响
1.00
空气 加稳定剂
Stabilizaztion system: 0.08 %wt Ionol 0.08 %wt Irganox 1010
氮气 加稳定剂
空气
无稳定剂 0.50
氮气 无稳定剂
% Weight
升温TG 1 C /min
0.00 100 140 180 220 260 300 340 380 420 460 Temperature (C)
Weight (%)
100
80
60
40
air
N2
20
0
100 200 300 400 500 600 700
Temperature C
不同气氛的比较 ,10C /min 空气中两个峰,氮气中只有一个峰
100
100
90
80
Static air 80
Nitrogen
60
70
40
60
50
20 40
0
30
物含量:w1, w2, …随温度升高。表明失重有两种机理: (1)低聚物,快降; (2)高聚物,线性
Weight (wt%)
100.0
99.9
99.8 t1
99.7
99.6
t2
T(isoth.) = 160C T(isoth.) = 190C
99.5
99.4
t3
T(isoth.) = 220C
99.3
稳定化PP的 等温TG结果
Oligomer content, % wt
0.8
无稳定剂
0.7
加稳定剂
0.6
0.5
0.4
0.3
0.2 160 180 200 220 240 260 280
T(isothermal), C
降解速率 k 可用Arrhenius方程表示:
1e-05
无稳定剂 加稳定剂
k AeE / RT
460
440
10
420
400
380
360
Ln (HEAT RATE) (°C/min)
5
20
10
5
2.5
Conversion
1.0
0.5
2
1
1.4
1.5
1.6
1000/T (K)
Activation Energy (Ea) Slope
1000000
TGA Kinetics - Estimated Lifetime
TEMPERATURE (°C)
相关主题