事例见最后1、先计算出建筑的热负荷然后0.86*Q/(Tg-Th)=G这是流量2、我设计的题目是沧州市某生活管理处采暖系统的节能改造工程。
这个集中供热系统的采暖面积是33.8万平方米。
通过计算可知,该系统每年至少可节煤5000吨。
换句话说,30%多的能量被浪费了。
如果我的设计被采纳,这个管理处每年可以节约大约一百万元的经费(如果煤价是200元/吨)。
而我所做的仅仅是装调节阀,平衡并联管路阻力;安装温度计,压力表,对采暖系统进行监控;换掉了过大的循环水泵和补给水泵;编制了锅炉运行参数表。
关键词:调节阀节能采暖系统原始资料1. 供热系统平面图,包括管道走向、管径、建筑物用途、层高、面积等。
2. 锅炉容量、台数、循环水泵型号及台数等。
本系统原有15吨锅炉三台,启用两台;10吨锅炉三台,启用一台;配有12SH-9A型160KW循环水泵三台,启用两台。
3. 煤发热量为23027KJ/kg(5500kcal/kg)。
4. 煤耗量及耗煤指标,由各系统资料给出。
采暖面积:33.8万m2;单位面积煤耗量:39.54kg/m2•年。
5. 气象条件:沧州地区的室外供热计算温度是-9℃,供热天数122天,采暖起的平均温度-0.9℃。
6. 锅炉运行平均效率按70%计算。
7. 散热器以四柱为主,散热器相对面积取1.5。
8. 系统要求采用自动补水定压。
设计内容1.热负荷的校核计算《节能技术》设计属集中供热系统的校核与改造。
鉴于设计任务书所提供的原始资料有限,拟采用面积热指标法进行热负荷的概算。
面积热指标法估算热负荷的公式如下:Qnˊ= qf × F / 1000 kW其中:Qnˊ——建筑物的供暖设计热负荷,kW;F ——建筑物的建筑面积,㎡;qf ——建筑物供暖面积热指标,W/㎡;它表示每1㎡建筑面积的供暖设计热负荷。
因此,为求得建筑物的供暖设计热负荷Qnˊ,需分别先求出建筑物供暖面积热指标qf 和建筑物的建筑面积F。
1.1 热指标的选择由《节能技术》附表查得:住宅的热指标为46~70W/㎡。
我们知道,热指标与建筑物所在地的气候条件和建筑类型等因素有关。
根据建筑物的实际尺寸,假定一建筑模型,使用当地的气象资料,计算出所需热指标。
这样可以使热指标接近单位面积的实耗热量,以减小概算误差。
建筑模型:长30米,宽10米,高3.6米。
普通内抹灰三七砖墙;普通地面;普通平屋顶。
东、西及北面均无窗,南面的窗墙面积比按三比七。
不考虑门的耗热量。
注:考虑到简化计算热指标时,选用的建筑模型忽略了门的耗热量,东窗、西窗和北窗的耗热量,且业主有安装单层窗户的可能性,还考虑到室外管网热损失及漏损,为使概算热指标接近实际情况,楼层高度取值适当加大;本设计若无特殊说明,资料即来源于《供热工程》;若无沧州的数据,则取与之毗邻的天津市的资料进行计算。
1.1.1 冷风渗透耗热量Q´2的计算根据附录1-6,沧州市的冷风朝向修正系数:南向n = 0.15。
按表1-7,在冬季室外平均风速vpj = 2.8 m/s下,双层木窗冷风渗透量L = 3.58 m³/m·h。
窗墙面积比按三比七,若采用尺寸(宽×高)为1.5×2.0,带上亮的三扇两开窗,应有窗户11个。
而每个窗户可开启部分的缝隙总长为13米。
那么南向的窗户缝隙总长度为11×13 = 143 m。
V = L×l×n = 2.2×143×0.15 = 42.04 m³/ h冷风渗透耗热量Q´2等于:Q´2= 0.278Vρwcp( tn- t´w)= 0.278×42.04×1.34×1×[18-(-9)]= 423 W1.1.2 围护各部分耗热量Q´的计算将所选建筑模型分成顶棚,墙体及窗,地面三部分,分别求其耗热量。
有关计算请参见“耗热量计算表”。
Q´顶棚 = 6885 WQ´墙体及窗 = 12340 WQ´地面 = 2701 W1.1.3 不同层高的热指标:一层:q1 =(2701+12340+6885)/ 300 = 73 W/㎡二层:q2 =(2701+12340×2+6885)/ 600 = 57 W/㎡三层:q3 =(2701+12340×3+6885)/ 900 = 52 W/㎡四层:q4 =(2701+12340×4+6885)/ 1200 = 49 W/㎡说明:四层以上的建筑物,为保险起见,其热指标按四层的取值。
1.1.4 各用户的计算流量流量计算公式:GL = 0.86×∑Q /(tg-th) Kg /h其中:GL ——流量,Kg /h;∑Q ——热负荷,W;tg、th ——供回水温度,℃。
说明:在选择概算热指标时已经考虑室外管网热损失及漏损,故在此不再考虑此系数2.外网水力平衡的计算与较核这部分的计算已经列于水力计算表中,在此只给出扼要的计算说明。
2.1 外网的编号由于本工程的管段较多,若从1开始,顺次递增编完所有的管段,其最后的一个管段编号会很大。
而且,从锅炉房出来的是六根管,如此编号,各管始末段不直观,不利于水力计算。
因此,从锅炉房出来的六根管,各个均由1开始顺次递增编号,分别用圆形、斜三角形、三角形、菱形、方形和多边形圈住管段编号并命名为圆形环路、斜三角形环路、三角形环路、菱形环路、方形环路和多边形。
2.2 比摩阻的计算《节能技术》中给出了计算公式为:R = 0.00688×0.00050.25×G2 /(U1×D0.25)其中:R ——比摩阻,Pa/m;G ——流量,Kg /h;U1 ——水的密度。
近似取100℃时的值:958.38Kg /m3;D ——管径,m。
2.3 沿程阻力的计算《节能技术》中给出的计算公式为:R = H×L其中:R ——沿程阻力,Pa;H ——比摩阻,Pa/m;L ——管段长度,m。
2.4 管段阻力公式:《节能技术》中给出了计算公式为:R = H×L(1+α)其中:R ——沿程阻力,Pa;H ——比摩阻,Pa/m;L ——管段长度,m。
α ——局部阻力系数。
局部阻力与沿程损失的比例百分数,一般取α = 0.3 。
对比2.2和2.3 中的两个公式,可得出以下关系式:R管段= 1.3×R沿程2.5 用户阻力的确定按照指导老师给出的经验值(采暖面积为4000㎡的用户压头取2m水柱,2000㎡的取1m),结合实际情况稍做扩展,用户压力按以下原则选取:采暖面积/㎡用户压头/ Pa2500<F≤3000125003000<F≤3500150003500<F≤4000175004000<F≤4500200004500<F≤500022500采暖面积/㎡用户压头/PaF≤5002500500<F≤100025001000<F≤150050001500<F≤200075002000<F≤250010000个别采暖面积大于5000㎡的,其用户压头按以上表格类推。
末端用户的用户压头按上表的1.5倍选取。
1.1.1 冷风渗透耗热量Q´2的计算根据附录1-6,沧州市的冷风朝向修正系数:南向n = 0.15。
按表1-7,在冬季室外平均风速vpj = 2.8 m/s下,双层木窗冷风渗透量L = 3.58 m³/m·h。
窗墙面积比按三比七,若采用尺寸(宽×高)为1.5×2.0,带上亮的三扇两开窗,应有窗户11个。
而每个窗户可开启部分的缝隙总长为13米。
那么南向的窗户缝隙总长度为11×13 = 143 m。
V = L×l×n = 2.2×143×0.15 = 42.04 m³/ h冷风渗透耗热量Q´2等于:Q´2= 0.278Vρwcp( tn- t´w)= 0.278×42.04×1.34×1×[18-(-9)]= 423 W1.1.2 围护各部分耗热量Q´的计算将所选建筑模型分成顶棚,墙体及窗,地面三部分,分别求其耗热量。
有关计算请参见“耗热量计算表”。
Q´顶棚 = 6885 WQ´墙体及窗 = 12340 WQ´地面 = 2701 W1.1.3 不同层高的热指标:一层:q1 =(2701+12340+6885)/ 300 = 73 W/㎡二层:q2 =(2701+12340×2+6885)/ 600 = 57 W/㎡三层:q3 =(2701+12340×3+6885)/ 900 = 52 W/㎡四层:q4 =(2701+12340×4+6885)/ 1200 = 49 W/㎡说明:四层以上的建筑物,为保险起见,其热指标按四层的取值。
1.1.4 各用户的计算流量流量计算公式:GL = 0.86×∑Q /(tg-th) Kg /h其中:GL ——流量,Kg /h;∑Q ——热负荷,W;tg、th ——供回水温度,℃。
说明:在选择概算热指标时已经考虑室外管网热损失及漏损,故在此不再考虑此系数2.外网水力平衡的计算与较核这部分的计算已经列于水力计算表中,在此只给出扼要的计算说明。
2.1 外网的编号由于本工程的管段较多,若从1开始,顺次递增编完所有的管段,其最后的一个管段编号会很大。
而且,从锅炉房出来的是六根管,如此编号,各管始末段不直观,不利于水力计算。
因此,从锅炉房出来的六根管,各个均由1开始顺次递增编号,分别用圆形、斜三角形、三角形、菱形、方形和多边形圈住管段编号并命名为圆形环路、斜三角形环路、三角形环路、菱形环路、方形环路和多边形。
2.2 比摩阻的计算《节能技术》中给出了计算公式为:R = 0.00688×0.00050.25×G2 /(U1×D0.25)其中:R ——比摩阻,Pa/m;G ——流量,Kg /h;U1 ——水的密度。
近似取100℃时的值:958.38Kg /m3;D ——管径,m。
实际流量计算事例:供水温度95度回水温度70度取暖面积10000平方米每平方米供暖面积每小时耗能70W流量计算公式:0.86×Q/(Tg-Th)=G(Kg/h)Q=10000×70W将实际参数带入公式得:G=0.86×70×10000/(95-70)=24080(Kg/h)=24.08(t/h)在一个封闭循环热水系统中,循环泵扬程为32米,膨胀(补)水箱设于相对水泵高45米的屋面。