U U图 11-1LR图 11-2图 11-3实验一戴维南定理的验证12.掌握测量有源二端网络等效参数的一般方法。
1.戴维南定理和诺顿定理戴维南定理指出:任何一个有源二端线性网络,总可以用一个电压源U S和一个电阻R S串联组成的实际电压源来代替,其中:电压源U S等于这个有源二端网络的开路电压U OC, 内阻R S等于该网络中所有独立电源均置零(电压源短路,电流源开路)后的等效电阻R O。
U S、R S和I S、R S称为有源二端网络的等效参数。
2.(1在有源二端线性网络输出端开路时,用电压表直接测其输出端的开路电压U OC, 然后再将其输出端短路,测其短路电流I SCSCOCS IUR=。
此法必须在短路电流Isc的数值小于有源二端网络允许范围内进行,否则会因短路电流过大而损坏网络内的器件。
(2)用电压表、电流表测出有源二端网络的外特性曲线,如图5-1所示。
开路电压为U OC,根据外特性曲线求出斜率tgφ,则内阻为:图5-1IUR∆∆==φtgS。
(3)如图5-2所示,当负载电压为被测网络开路电压U OC一半时,负载电阻R L的大小(由电阻箱的读数确定)即为被测有源二端网络的等效内阻R S数值。
图5-2 图5-3(4)在测量具有高内阻有源二端网络的开路电压时,用电压表进行直接测量会造成较大的误差,为了消除电压表内阻的影响,往往采用零示测量法,如图5-3所示。
零示法测量原理是用一低内阻的恒压源与被测有源二端网络进行比较,当恒压源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”,然后将电路断开,测量此时恒压源的输出电压U,即为被测有源二端网络的开路电压。
三.实验设备1.直流数字电压表、直流数字毫安表2.直流稳压电源3.直流稳流电源4.综合实验台四.实验内容被测有源二端网络如图5-4所示.图5—41.图5-4线路接入直流稳压电源U S=12V和直流稳流电源I S=20mA及可变电阻R L。
先断开R L测U OC,再短接R L测I SC,则Ro=U OC/Isc,填入下表。
2利用NEEL—23元件箱中的不同阻值按照表5-2选取合适的RL值,测量有源二端网络的外特性。
3.验证戴维南定理:利用NEEL—23元件箱中的不同阻值,将其阻值调整为等效电阻RΟ值,然后令其与直流稳压电源(调到步骤“1”时所测得的开路电压UOC之值)相串联,仿照步骤“2”测其特性,对戴氏定理进行验证。
12.改接线路时,要关掉电源。
六1.说明戴维南定理和诺顿定理的应用场合。
七.实验报告要求1.根据步骤2和3分别绘出曲线,验证戴维南定理的正确性;2.回答思考题。
图19-3镇流器启辉器实验二 日光灯的安装及功率因数的提高一.实验目的1.研究正弦稳态交流电路中电压、电流相量之间的关系。
2.掌握日光灯线路的接线。
3.理解提高电路功率因数的意义并掌握其方法。
二.原理说明1.在单相正弦交流电路中,用交流电流表测得各支路中的电流值,用交流电压表测得回路各元件两端的电压值,它们之间的关系满足相量形式的基尔霍夫定律,∑=∙0 I∑=∙0 U2.日光灯线路如图10-1所示,图中A是日光灯 图10-13.并联电容提高电路的功率因数。
通常提高电感性负载功率因数的方法是在负载两端并联适当数量的电容器,使负载的总无功功率Q =Q L -Q C 减小,在传送的有功率功率P 不变时,使得功率因数提高,线路电流减小。
当并联电容器的Q C =Q L 时,总无功功率Q =0,此时功率因数ϕcos =1,线路电流I 最小。
C=P (tan φ1-tan φ)/wU2三.实验设备1.交流电压、电流、功率、功率因数表23.综合实验台(包括30W日光灯、30W镇流器,电容器,电流插头 )四.实验内容1按图10-2组成线路,经指导教师检查后按下闭合按钮开关,调节自耦调压器的输出,使其输出电压缓慢增大,直到日光灯刚启辉点亮为止。
将电压调至220V,测量功率P,电流I,电压2,1,U U U 等值,填写下表,验证电压、电流相量关系。
( 将电容开关断开)图10-22.并联电路——五.实验注意事项1.接线前将实验台上荧光灯开关打开至照明端,检查灯管是否完好后,将开关打开至实验端。
2.3.线路接线正确,日光灯不能启辉时,应检查启辉器及其接触是否良好。
4.边做试验,边检查实验数据。
六.预习思考题2.为了提高电路的功率因数,常在感性负载上并联电容器,此时增加了一条电流支路,试问电路3.提高线路功率因数为什么只采用并联电容器法,而不用串联法?所并的电容器是否越大越好?七.实验报告2.根据实验数据,分别绘出电压、电流相量图,验证相量形式的基尔霍夫定律。
4.装接日光灯线路的心得体会及其他。
实验三常用电子仪器的使用一、实验目的(1)了解双踪示波器、低频信号发生器及晶体管毫伏表的原理框图和主要技术指标; (2)掌握用双踪示波器测量信号的幅度、频率;(3)掌握低频信号发生器、晶体管毫伏表的正确使用方法。
二、实验器材双踪示波器 DF4321型(或HH4310A 型) 低频信号发生器 DF1641B 型(或SG1631C 型)晶体管毫伏表 DF2175型三、实验原理与参考电路在电子技术实验里,测试和定量分析电路的静态和动态的工作状况时,最常用的电子仪器有示示波器:用来观察电路中各点的波形,以监视电路是否正常工作,同时还用于测量波形的周期、幅度、相位差及观察电路的特性曲线等。
低频信号发生器:为电路提供各种频率和幅度的输入信号。
直流稳压电源:为电路提供电源。
晶体管毫伏表:用于测量电路的输入、输出信号的有效值。
万用表:用于测量电路的静态工作点和直流信号的值。
四、实验内容及步骤1.低频信号发生器与晶体管毫伏表的使用 (1)信号发生器输出频率的调节方法按下“频率范围”波段开关,配合面板上的“频率调节”旋钮可使信号发生器输出频率在0.3Hz~3MHz 的范围改变。
(2)信号发生器输出幅度的调节方法仪器面板右下方的Q9是信号的输出端,调节“输出衰减”开关和“输出调节”电位器,便可在输出端得到所需的电压,其输出为0-20V P-P 的范围。
(3)低频信号发生器与毫伏表的使用将信号发生器频率调至lkHz ,调节“输出调节”旋钮,使仪器输出电压为5V P-P 左右的正弦波,分别置分贝衰减开关于0dB 、—20dB 、—40dB 、—60dB 挡,用毫伏表分别测出相应的电压值。
注意测量时不要超过毫伏表的量程,并且尽可能地把档位调到与被测量值相接近,以减小测量误差。
2.示波器的使用(1)使用前的检查与校准先将示波器面板上各键置于如下位置:“工作方式”位于“交替”(如果只观察一个波形可置于CHl 通道或CH2通道);“极性”选择位于“+”;“触发方式”位于“内触发”;“DC ,GND ,AC"开关位于“AC ”;“高频,常态,自动”开关位于“自动”位置;“灵敏度V /div"开关于“0.2V /div"档,“扫速t /div"开关于“0.2ms /div"档,亮度、辉度、位移、电平开关置中间位置,开启电源后,屏幕上应出现两条扫描线。
然后用同轴电缆将校准信号输出端与CHl通道或CH2通道的输入端(红夹子)相连接,扫速和灵敏度开关的微调旋钮置校正位置(顺时针旋转到底),示波器屏幕上应显示电压为0.5V P-P、周期为lms的方波。
调节各旋钮使屏幕上观察到的波形细而清晰。
(2)交流信号电压幅值的测量调低频信号发生器信号频率为lkHz、输出电压为5V P-P,适当选择示波器灵敏度选择开关“V/div"和扫速开关“t/div"的位置,使示波器屏幕上能观察到完整、稳定的正弦波,同时将灵敏度选择开关“微调”旋钮置于校准位置,则此时屏幕上纵向坐标表示每格的电压伏特数,根据被测波形在纵向高度所占格数便可读出电压的数值,将信号发生器的分贝衰减器置于表14-1中要求的位置并测出其结果记入表中。
(3)交流信号频率的测量将示波器扫速开关的“微调”旋钮置于校准位置,在预先校正好的条件下,此时扫描速率开关“t/div"的刻度值表示屏幕横向坐标每格所表示的时间值。
根据被测信号波形在横向所占的格数直接读出信号的周期,若要测量频率只需将被测的周期求倒数即为频率值。
按表14-2所示频率,由信号发生器输出信号,用示波器测出其周期,并计算频率,将所测结果与已知频率比较。
Y号发生器(I)作为已知频率f x的信号,从"CH1(X) "插座输入,这时扫描速率开关应置于X-Y档。
调节信号发生器I的频率f x,当f x与f Y之间成一定倍数关系时,屏幕上就能显示李沙育图形,如图14-2(b)所示,由该图形圆圈的个数及f x的读数即可确定出被测信号的频率f Y。
(注意:水平方向圆圈个数=f Y/f x,垂直方向圆圈个数=f X/f Y)五、实验报告要求(1)认真记录数据并填写相应表格;(2)分析测量结果与理论值的误差,讨论其产生原因;(3)回答思考题。
六、思考题(1)使用示波器时若要达到如下要求应调节哪些旋钮和开关?①波形清晰,亮度适中;②波形稳定;③移动波形位置;④改变波形的显示个数;⑤改变波形的高度;⑥同时观察两路波形。
(2)用示波器测量信号的频率与幅值时,如何来保证测量精度?(3)双踪示波器的“断续”和“交替”工作方式之间的差别是什么?实验四 用万用表检测二、三极管一、实验目的(1)熟悉用万用表判别晶体二、三极管的正确方法; (2(3 1 其中 ×100Ω 2.晶体二极管的测试如图15-1所示,用黑表笔(电源正级)接二极管阳极,红表笔(电源负级)接二极管阴极时,二极管正向导通;反之,二极管反向截止。
正向导通电阻约几百欧或几千欧,反向电阻约几百千欧以上。
阻值在这个范围内,说明管子是好的;如果正、反向电阻均为无穷大,则表明二极管内部断开;如果正、反向电阻均为零,说明二极管内部短路;如果正、反向电阻接近,则二极管性能严重恶化。
3.用万用表判别三极管的管脚和类型(1)先判别基极b 三极管可等效为两个背靠背连接的二极管。
如图15-2所示。
根据PN 结单向导电原理:基-集、基-射结正向导通电阻均较小,反向电阻均较大,所以很容易把基级判别出来。
现以NPN 管为例: 测量时先假设某一管脚为“基极b ”,用黑表笔接假设的“基极b ”,红表笔分别接其余两个管脚,测量阻值,若阻值均较小,再将黑红笔对调(既红笔接假设的基级b ),重复测量一次,若阻值均较大,则原先假设的基极是正确的。
如果两次测得的阻值是一大一小,则原先(2)判别管子类型 由上面判别基极的结果,同时可知管子类型。
如用黑表笔(电池正极)接管子基极,红表笔(电池负极)分别接其余两脚时,电阻值均较小,由PN 结单向导电原理知道,基极是P 区,集电极和发射极是N 区,故为NPN 管。