)s 习题44-1.如图所示的圆锥摆,绳长为l ,绳子一端固定,另一端系一质量为m 的质点,以匀角速ω绕铅直线作圆周运动,绳子与铅直线的夹角为θ。
在质点旋转一周的过程中,试求:(1)质点所受合外力的冲量I;(2)质点所受张力T 的冲量T I。
解:(1)设周期为τ,因质点转动一周的过程中,速度没有变化,12v v =,由I mv =∆ ,∴旋转一周的冲量0I =;(2)如图该质点受的外力有重力和拉力,且cos T mg θ=,∴张力T 旋转一周的冲量:2cos T I T j mg j πθτω=⋅=⋅所以拉力产生的冲量为2mgπω,方向竖直向上。
4-2.一物体在多个外力作用下作匀速直线运动,速度4/v m s =。
已知其中一力F方向恒与运动方向一致,大小随时间变化内关系曲线为半个椭圆,如图。
求:(1)力F在1s 到3s 间所做的功;(2)其他力在1s 到3s 间所做的功。
解:(1)半椭圆面积⋅====⋅=⎰⎰⎰⎰v t F v t Fv x F x F A d d d dJ 6.12540201214==⨯⨯⨯=ππ(2)由动能定理可知,当物体速度不变时,外力做的总功为零,所以当该F做的功为125.6J 时,其他的力 的功为-125.6J 。
4-3.质量为m 的质点在Oxy 平面内运动,运动学方程为cos sin r a t i b t j ωω=+,求:(1)质点在任一时刻的动量;(2)从0=t 到ωπ/2=t 的时间内质点受到的冲量。
解:(1)根据动量的定义:P mv = ,而drv dt== sin cos a t i b t j ωωωω-+ , ∴()(sin cos )P t m a t i b t j ωωω=-- ;(2)由2()(0)0I mv P P m b j m b j πωωω=∆=-=-= , 所以冲量为零。
4-4.质量为M =2.0kg 的物体(不考虑体积),用一根长为l =1.0m 的细绳悬挂在天花板上。
今有一质量为m =20g 的子弹以0v =600m/s 的水平速度射穿物体。
刚射出物体时子弹的速度大小v =30m/s ,设穿透时间极短。
求: (1)子弹刚穿出时绳中张力的大小; (2)子弹在穿透过程中所受的冲量。
解:(1)解:由碰撞过程动量守恒可得:01mv mv M v =+∴01 5.7mv mvv M-==/m s 根据圆周运动的规律:21v T Mg M l -=,有:2184.6v T Mg M N l=+=;(2)根据冲量定理可得:00.0257011.4I mv mv N s =-=-⨯=-⋅。
4-5.一静止的原子核经放射性衰变产生出一个电子和一个中微子,巳知电子的动量为m/s kg 102.122⋅⨯-,中微子的动量为236.410kg m/s -⨯⋅,两动量方向彼此垂直。
(1)求核反冲动量的大小和方向;(2)已知衰变后原子核的质量为kg 108.526-⨯,求其反冲动能。
解:由碰撞时,动量守恒,分析示意图,有: (1)2210P -==核 221.3610/kgm s -=⨯又∵0.64tan 1.2P P α==中微子电子,∴028.1α= ,所以221.410/P kgm s -=⨯核 ,9.151=-=απθ ; (2)反冲的动能为:2180.17102k P E J m -==⨯核核。
4-6.一颗子弹在枪筒里前进时所受的合力大小为5440010()3F t N =-⨯,子弹从枪口射出时的速率为300/m s 。
设子弹离开枪口处合力刚好为零。
求:(1)子弹走完枪筒全长所用的时间t ;(2)子弹在枪筒中所受力的冲量I ; (3)子弹的质量。
解:(1)由于离开枪口处合力刚好为零,有:544001003t -⨯=, 得:3310t s -=⨯;(2)由冲量定义:0tI F dt =⎰有:0.0035520.003004240010(40010)0.633I t dt t t N s =-⨯=-⨯=⋅⎰() (3)再由Im v=,有:30.6/300210m kg -==⨯。
4-7.有质量为m 2的弹丸,从地面斜抛出去,它的落地点为c x 。
如果它在飞行到最高点处爆炸成质量相等的两碎片。
其中一碎片铅直自由下落,另一碎片水平抛出,它们同时落地。
问第二块碎片落在何处。
解:利用质心运动定理,在爆炸的前后,质心始终只受重力的作用,因此,质心的轨迹为一抛物线,它的落地点为c x 。
112212c m x m x x +=,而12m m m ==, 12c x x =,水平方向质心不变,总质心仍为c x ,所以c c c x x m mx m x x 2322122=⇒+=4-8.两个质量分别为1m 和2m 的木块B A 、,用一劲度系数为k 的轻弹簧连接,放在光滑的水平面上。
A 紧靠墙。
今用力推B 块,使弹簧压缩0x 然后释放。
(已知m m =1,m m 32=)求:(1)释放后B A 、两滑块速度相等时的瞬时速度的大小;(2)弹簧的最大伸长量。
解:分析题意,首先在弹簧由压缩状态回到原长时,是弹簧的弹性势能转换为B 木块的动能,然后B 带动A 一起运动,此时动量守恒,两者具有相同的速度v 时,弹簧伸长最大,由机械能守恒可算出其量值。
(1) 222200220121122m v kx m v m m v==+() cc x所以:v ==; (2)22122022212121v m m kx v m )(++=那么计算可得:021x x =4-9.如图所示,质量为m A 的小球A 沿光滑的弧形轨道滑下,与放在轨道端点P 处(该处轨道的切线为水平的)的静止小球B 发生弹性正碰撞,小球B 的质量为m B ,A 、B 两小球碰撞后同时落在水平地面上.如果A 、B 两球的落地点距P 点正下方O 点的距离之比L A / L B=2/5,求:两小球的质量比m A /m B .解:A 、B 两球发生弹性正碰撞,由水平方向动量守恒与机械能守恒,得B B A A A A m m m v v v +=0 ①2220212121BB A A A A m m m v v v += ② 联立解出 0A B A B A A m m m m v v +-=, 02A BA AB m m m v v +=由于二球同时落地,∴ 0>A v ,B A m m >;且B B A A L L v v //= ∴52==B A B A L L v v , 522=-A B A m m m 解出 5/=B A m m答案:5/=B A m m 。
4-10.如图,光滑斜面与水平面的夹角为30=α,轻质弹簧上端固定.今在弹簧的另一端轻轻地挂上质量为 1.0M kg =的木块,木块沿斜面从静止开始向下滑动.当木块向下滑30x cm =时,恰好有一质量0.01m kg =的子弹,沿水平方向以速度200/v m s =射中木块并陷在其中。
设弹簧的劲度系数为25/k N m =。
求子弹打入木块后它们的共同速度。
解:由机械能守恒条件可得到碰撞前木块的速度,碰撞过程中子弹和木块沿斜面方向动量守恒,可得:22111sin 22Mv kx Mgx α+= 10.83/v m s ⇒= (碰撞前木块的速度) 再由沿斜面方向动量守恒定律,可得: 1cos Mv mv m M v α'-=+() 0.89/v m s '⇒=-。
4-11. 水平路面上有一质量15m kg =的无动力小车以匀速率02/v m s =运动。
小车由不可伸长的轻绳与另一质量为225m kg =的车厢连接,车厢前端有一质量为320m kg =的物体,物体与车厢间摩擦系数为2.0=μ。
开始时车厢静止,绳未拉紧。
求:(1)当小车、车厢、物体以共同速度运动时, 物体相对车厢的位移;(2)从绳绷紧到三者达到共同速度所需时间。
(车与路面间摩擦不计,取g =10m /s 2) 解:(1)由三者碰撞,动量守恒,可得:v m m m v m '++=)(32101 2.0='⇒v m s ,再将1m 与2m 看成一个系统,由动量守恒有:v m m v m )(2101+= s m v m m m v 31255250211=+⨯=+=,对3m ,由功能原理有:2231212311()22m gs m m v m m m v μ'=+-++()m g m v m m m v m m s 60121)(213321221='++-+=μ)( ; (2)由t g m μv m 33=',有:s g μv t 1.0102.02.0=⨯='=。
4-12.一质量为M 千克的木块,系在一固定于墙壁的弹簧的末端,静止在光滑水平面上,弹簧的劲度系数为k 。
一质量为m 的子弹射入木块后,弹簧长度被压缩了L 。
(1)求子弹的速度;(2)若子弹射入木块的深度为s ,求子弹所受的平均阻力。
解:分析,碰撞过程中子弹和木块动量守恒,碰撞结束后机械能守恒条件。
(1)相碰后,压缩前:v M m mv '+=)(0,压缩了L 时,有:222121kL v M m ='+)(,计算得到:)(M m k mLv +=0,0'mv v m M ==+(2)设子弹射入木快所受的阻力为f ,阻力做功使子弹动能减小,木块动能增加。
222201112222M k L f s mv mv Mv m ''=-=-∴22M k L f ms=4-13.质量为M 、长为l 的船浮在静止的水面上,船上有一质量为m 的人,开始时人与船也相对静止,然后人以相对于船的速度u 从船尾走到船头,当人走到船头后人就站在船头上,经长时间后,人与船又都静止下来了。
设船在运动过程中受到的阻力与船相对水的速度成正比,即f k v =-。
求在整个过程中船的位移x ∆。
分析:将题中过程分三段讨论。
(1)设船相对于静水的速度为()v t ,而人以相对于船的速度为u ,则人相对于静水的速度为()u v t +,开始时人和船作为一个系统动量之和为零。
由于水对船有阻力,当人从船尾走到船头时,系统动量之和等于阻力对船的冲量,有:1I =()[()]M v t m u v t ++,此时,()v t 方向u 方向相反,船有与人行进方向相反的位移1x ;(2)当人走到船头突然停下来,人和船在停下来前后动量守恒,有:()[()]()'M v t m u v t M m v ++=+,'v 为人停下来时船和人具有的共同速度,'v 方向应于原u 方向相同;(3)人就站在船头上,经长时间后,人与船又都静止下来,表明最后人和船作为一个系统动量之和又为零,则这个过程水阻力对船的冲量耗散了系统的动量,有:2()'I M m v =+,船有与人行进方向相同的位移2x 。