当前位置:文档之家› 分子神经生物学期末考试题(附详尽答案)..

分子神经生物学期末考试题(附详尽答案)..

1、你认为Aβ学说前景如何?说明理由。

(赫荣乔)从阿洛斯·阿尔茨海默1906年对AD患者脑的实验性报道到Glenner 和Masters1984年关于β淀粉样蛋白的生化分析,1987年对于APP的分离,90年代初期对于APP病源性变异的认识,“淀粉样蛋白假说”在过去的20年在学术界中已取得了确定的地位。

随着EFOAD有关Aβ产生的基因的正染色体变异(特别是Aβ42)的认识,关于迟发性AD的风险因子APOE-ε4,这个因子似乎能影响Aβ的聚集和清除(例如从脑中排出)的概念也建立了起来。

有些在各个独立的数据库中已经显现出遗传学联系得基因有着在基因水平和功能水平做进一步探索的价值。

生物学研究提示另外的几种蛋白可能在AD的产生和清除上也起关键作用,包括那些能影响β和γ分泌酶活性的蛋白(例如neprilysin、IDE和PLAU), 以及那些能够影响Aβ从脑中排出的蛋白(例如α2M and LRP).基于各个独立的旨在对新的AD基因定位的基因组筛选研究结果,期待另有一个同APOE 相似的单个AD风险性基因似乎是不合理(Warwick Daw 等, 2000).大部分余下的基因都只与AD发病风险有小到中等的关系。

它们之间可能存在交互作用,并不是一个单一的风险因子。

这些普通变量在AD的发病因素上的作用较以前预测的小是可能的。

AD的疾病类型是多种多样的,某些迟发性/早发性AD可能会由于一些少见的或现在还未知的途径引起神经元降解,同那些在EFOAD中发现的情况相似,而同一般的多态性易感的结果相反。

所以不能只依靠AB学说就全部解释。

随着更多更成熟的在基于家族史和病例对照统计分析方法和饱和基因SNPs数目的增多以及更多的基因数据库的出现将会加强有关基因的分析的进行。

第二,更大量的和更确定的AD病例的收集也会使分析更为方便。

最后,能够有效预测和检验编码和非编码SNPs的能力的不断增强也能对旨在证明DNA变异的疾病相关性的病原结果的研究提供帮助。

临床上预防和治疗AD,达到这一步仍然是相当遥远的事情,从以往艰苦努力获得的大量数据而成功确定的四个AD基因已经提示我们最有效的预防和治疗AD的方法包括减少Aβ的产生(特别是Aβ42)和加速其从大脑中的清除和降解。

大量APP 或Aβ转基因动物模型的建立,这些AD 动物模型均呈现不同程度的AD 样病理变化和认知功能障碍[31]。

在AD 动物模型中,抑制Aβ产生或促进Aβ清除可减轻AD 样的病理变化和认知障碍[32-33]。

多方面的结果支持Aβ积累导致神经元损伤在AD中起重要作用。

尽管有报道AD 患者大脑中Aβ淀粉样斑块量与AD患者认知功能障碍的程度之间无显著相关性[34-35],但大脑皮层和海马区神经突触的丢失程度[34] 和大脑内可溶性Aβ的水平[36-37] 与AD 患者认知功能障碍程度显著相关。

突触的功能异常和丢失被广泛认为是AD 患者认知功能下降的细胞机制。

近年来有多个蛋白被报道在Aβ引起的突触可塑性障碍中起重要作用,如Tau、Prion 和Caspase3 蛋白[67-70],大脑内Aβ积累导致突触障碍可能存在更基本的细胞分子机制,且可能是Aβ积累引起多种突触障碍的共同机制。

近十几年来,大量实验结果显示神经元内Aβ积累在AD 早期发生,并可能在突触损伤,特别是突触前区的结构功能异常改变、淀粉样斑块形成、神经元死亡中起重要作用。

Selkoe 实验室发现,由细胞分泌的Aβ42 寡聚体能损伤大鼠的学习、记忆,并能在体内损害大鼠海马区神经突触的LTP。

2、Kazutoshi Mori和Peter Walter获得2014年“拉斯克基础医学奖”的获奖理由是什么?(袁增强)答:获奖理由是“发现非折叠蛋白反应——一条综合的细胞内信号通路,他们的研究发现细胞能检测到内质网中蛋白质有害的错误折叠,并反馈给细胞核采取保护措施。

”内质网是负责对细胞分泌蛋白和细胞膜蛋白进行翻译后修饰折叠的工厂,内质网一旦发现这些蛋白质出现折叠错误,将会发出信号给细胞核,激活可以修改这些错误的基因。

这些研究对囊性纤维化和视网膜色素变性等疾病提供了分子解释。

内质网内环境的稳定是实现内质网功能的基本条件,因此内质网具有极强的内稳态体系。

内质网应激是指细胞受到内外因素的刺激时,内质网形态、功能的平衡状态受到破坏后发生分子生化的改变,蛋白质加工运输受阻,内质网内累积大量未折叠或错误折叠的蛋白质,细胞会采取相应的应答措施,缓解内质网压力,促进内质网正常功能的恢复。

引发内质网应激的因素很多,缺血低氧、葡萄糖或营养物匮乏、钙离子紊乱等可造成急性应激损伤;而病毒感染、分子伴侣或其底物的基因突变等能引发慢性应激损伤。

根据诱发原因,可将内质网应激分为以下3种类型:未折叠或者错误折叠蛋白质在内质网腔内蓄积引发的UPR;正确折叠的蛋白质在内质网腔内过度蓄积激活细胞核因子κB引发的内质网过度负荷反应;胆固醇缺乏引发的固醇调节元件结合蛋白质通路调节的反应。

内质网应激是细胞对内质网蛋白累积的一种适应性应答方式,细胞通过减少蛋白质合成,促进蛋白质降解,增加帮助蛋白质折叠的分子伴侣等方式缓解内质网压力。

但内质网应激过强或持续时间过长,超过细胞自身的调节能力,就会伤害细胞,引起细胞代谢紊乱和凋亡等。

由于内质网应激常导致内质网内未折叠蛋白质或错误折叠蛋白的蓄积,引起未折叠蛋白反应,所以一般用参与未折叠蛋白反应的标志性分子来提示内质网应激的发生,PERK,IRE-1,ATF6是内质网应激的三条信号通路的重要分子。

在非内质网应激条件下,免疫球蛋白结合蛋白能结合这三个分子的内质网内端,维持信号转导因子的非活化状态。

未折叠蛋白反应时,激活的核酸内切酶Ire1α能从X盒结合蛋白1(XBP-1)mRNA中特异性剪切26个碱基的内含子,改变XBP-1 mRNA的开放阅读框,其翻译产物XBP-1能促进含内质网应激反应元件的未折叠蛋白反应靶分子如BiP/GRP78表达,以减轻或中止内质网应激反应,从而恢复细胞内环境稳态。

可见BiP是内质网应激的关键性调控分子,其中BiP和XBP-1表达上调常被用作内质网应激的标志。

大量研究表明,发生内质网应激的细胞能调节内质网应激相关性促凋亡分子如CHOP和caspase-12等和促存活分子如GADD34和BiP等的表达/活化,最终决定细胞是适应还是凋亡。

在发生内质网应激条件下,PERK与分子伴侣Grp78分离而活化,并引起其下游eIF2α磷酸化而失活,终止细胞内绝大部分蛋白质的合成,但能够激活ATF4的表达,进而引起CHOP 表达量上调。

在哺乳动物细胞,XBP1是一种具有重要作用的蛋白质。

哺乳动物细胞中,当未折叠蛋白质在内质网蓄积时会激活未折叠蛋白反应。

哺乳动物细胞定位于内质网膜的IRE1a,可通过二聚化而激活其自身的蛋白激酶及核糖核酸酶活性,从而部分地转导未折叠蛋白反应信号。

活化的IRE1a在XBP1 mRNA的两个位点对其进行切割反应,诱导一种非传统剪接反应,这种剪接反应会产生一种功能性XBP1转录因子,可作为内质网应激反应时的传感器。

同时,在内质网应激反应时还有另一种转录激活因子6(ATF6)蛋白酶解系统发挥作用。

其实内质网应激不仅和疾病关系密切,而且也是细胞维持正常功能的重要手段。

最近就有这方面的研究。

研究发现,严重持续的应激会导致细胞死亡,适当的应激能让细胞更加健康,这是生命进化过程中获得的必然能力。

为应对环境不利因素,生物体必须建立一定的应对系统,这些应对系统具有可调节性,要维持这种应激系统正常功能,生物体必须经常接受外来不利因素的挑战。

其实生活中我们对这种现象非常熟悉,我们都知道温室里的花朵并不是健康的,不经历风雨植物难以应对自然环境的不利因素。

人类也一样,没有外界环境的接触,或者接触不够充分,例如太过干净无法获得健康的免疫系统,不接触阳光无法获得足够的维生素D,不经过足够的运动无法获得健康的肌肉。

细胞内的应激系统有很多,其中内质网应激是一种比较重要的形式,这种适当内质网应激和过度应激会产生生与死截然不同的后果。

内质网是细胞内蛋白质组装系统,组装蛋白质最重要的内容是进行折叠,折叠是蛋白质产生功能的必要条件,但在折叠过程中会发生错误,如果这种错误折叠过多,就会产生内质网应激,如果这种应激足够剧烈,可导致细胞死亡。

研究发现,内质网因为蛋白错误折叠发生应激反应时,一方面使死亡受体5激活,同时也能促进这种受体降解。

当内质网应激不够强时,死亡受体5的激活效应和降解导致的数量下降相互抵消,如果内质网内折叠蛋白持续积累导致应激足够强,激活效应超过降解效应,细胞会启动死亡程序,如果此时应激效应下降,因为死亡受体的水平会降低使细胞返回生存状态。

3、如何鉴别神经递质?简述囊泡循环的步骤。

(孙坚原)答:(1)中枢突触部位的信息传递由突触前膜释放递质来完成,在外周神经节内以及神经末梢与效应器之间的传递也是由释放递质来完成的。

神经系统内有许多化学物质,但只有符合一定条件的化学物质才能确认为递质。

这些条件是:①在突触前神经元内含有合成递质的前体物质和合成酶系,能够合成这一递质;②在神经末梢内有突触小泡结构,可贮存递质以免被胞浆内其他酶系所破坏。

当冲动抵达末梢时,小泡内的递质被释放入突触间隙;③递质在突触间隙内弥散,作用于突触后膜的受体而发挥其生理效应;④突触部位有使该递质失活的酶或摄取回收的环节;⑤用递质拟似剂或受体阻断剂能加强或阻断该递质的作用。

①、在神经元内合成。

②、贮存在突触前神经元并在去极化时释放一定浓度(具有显著生理效应)的量。

③、当作为药物应用时,外源分子类似内源性神经递质。

④、神经元或突触间隙的机制是对神经递质的清除或失活。

如不符合全部标准,称为“拟订的神经递质”。

分类:神经递质可分为外周神经递质与中枢神经递质两类。

1)外周神经递质(植物性神经递质)主要有两种:乙酰胆碱和去甲肾上腺素。

2)中枢神经递质,可分为四类:乙酰胆碱、单胺类、氨基酸类和肽类。

a.乙酰胆碱脑内许多部位存在乙酰胆碱递质系统。

由于脊髓前角运动神经元支配骨骼肌接头处的递质是乙酰胆碱,因此其分支与闰绍细胞形成的突触联系的递质也是乙酰胆碱。

当前角运动神经元兴奋时,一方面直接传出,引起骨骼肌收缩,另一方面经过侧支兴奋闰绍细胞;由于闰绍细胞是抑制性中间神经元,它的活动可返回抑制前角运动神经元,从而使骨骼肌的收缩能及时终止。

在特异感觉传入途径中,丘脑后外侧核的神经元与大脑皮层感觉区之间的突触传递,脑干网状结构中的某些神经元之间,边缘系统的海马以及大脑皮层内部均有乙酰胆碱突触传递。

乙酰胆碱在这些部位的作用主要是兴奋神经元的活动,传递特异感觉,提高大脑皮层的觉醒状态,以及促进学习与记忆等活动。

纹状体内也有乙酰胆碱系统。

相关主题