当前位置:文档之家› 频率特性法

频率特性法

分 惯性 二阶振荡
20lgK=29.5db,存在积分环节,故在w=1处 做29.5db点,过该点做-20dB/dec斜率直线L1
10
2
Frequency (rad/sec)
5.2.3积分环节
1 积分环节增益为 G(s) s
频率特性函数为
1 1 G( j ) e j
j

2
积分环节伯德图
5.2.4二阶振荡环节
二阶振荡环节增益为
1 G( s) 2 2 T s 2Ts 1 频率特性函数为 1 G ( j ) 1 (T ) 2 j 2T
伯德图研究系统频率响应的优点
• 动态补偿器的设计可以完全以伯德图为 依据。 • 伯德图可以由实验的方法获得。 • 串联系统的伯德图可简单相加而得,这 非常方便。 • 对数尺度允许伯德图表示相当广的频率 范围,而线性尺度很难做到。
5.2基本环节的频率特性分析
5.2.1比例环节 比例环节的增益为G(s)=K 频率特性函数为G(j)=K
A( ) 1
j
( )
时滞环节伯德图
5.2.7开环传递函数伯德图的绘制
• 绘制幅值曲线图步骤:
1. 将所有转折频率点求出,并按从小到大排 序(即将G(s)写成典型环节乘积形式)。 2. 确定20lgK及首段斜率:看sn项,斜率为 n×20db/dec。
3. 依据转折频率位置及环节斜率依次画出幅 频特性图。 注意:典型形式要写成时间常数形式。
伯德图的绘制(续)
• 绘制相位曲线图步骤:


画相位曲线在低频段的渐近线,为n×90°。
画近似相位曲线,在每个转折频率处改变 ±90°(一阶)或±180°(二阶)。 确定各单个相位曲线的渐进线,使得相位的 改变与上步骤一致,画每个相位曲线草图。 在图上把每个相位曲线相加。


伯德图的绘制举例
• 例5.1已知系统开环传递函数,绘制伯德图。
A( ) 1 [1 (T ) 2 ]2 (2T ) 2
2T ( ) arctan 1 (T ) 2
二阶振荡环节伯德图
1 当 (T ) 1 时,即 T 1 L( ) 20 lg1 0 T 1 2 当 (T ) 1 时,即 T 1 2 L( ) 20 lg(T ) T 1 40 lg 40 lg T
主要内容
• • • • • • 频率特性及频率特性法的基本概念 基本环节的频率特性分析 频率特性指标 开环频率特性的系统分析 控制系统的频率法校正 系列设计举例
5.1频率特性及频率特性法
对线性系统输入正弦信号,其输出的稳态响应 称为系统的频率响应。 设施加的正弦输入信号为 r (t ) Am sint Am 则频率响应为 Css (s) H (s) R(s) H (s) 2 s 2
2
5.2.5由对称性获得特性曲线
• 基本环节中的微分环节、一阶微分环节、 二阶微分环节分别与积分环节、惯性环节、 二阶振荡环节具有关于横轴对称的特性 。
微分环节伯德图 一阶微分环节伯德图 二阶微分环节伯德图
5.2.6时滞环节
时滞环节增益为 G( s) e 频率特性函数为
s
G( j) e


5.1.2基本概念
频率特性法是通过系统开环的频率特性图像 来对系统性能指标进行分析以及对系统加以 综合、校正的方法。它避免求解闭环极点, 其图形化方式具有极强的直观性。 频率特性法使得可以通过实验所确定的系统 频率响应来推断未知系统的传递函数。而且 设计者可以控制系统的带宽,以及控制系统 对不期望噪声和扰动响应的某些指标。 频率特性法的不足在于频域和时域之间缺乏 直接联系,需要靠各种设计准则来调整频率 响应特性以达到满意的暂态响应。
伯德图
• 伯德图(又称为频率特性的对数坐标图) :伯 德图将幅频特性和相频特性分别绘制。 • 幅频特性坐标横轴取信号角频率的对数 lg标定,但标写的数值为值。纵轴以分 贝为单位等分标定,其值为20lgA()dB 。 • 相频特性横轴和幅频特性相对应,纵轴为 φ()的度数。 • 常采用折线方式来近似绘制 。
1 1 L( ) 20 lgT 20 lg 20 lg T T
惯性环节的伯德图(续1)
Bode Diagram
L(ω)
Magnitude (dB)
0
1/10T
1/T
10/T
-10
-20
-30
Φ(ω)
Phase (deg)
-40 0
-45
-90 10
-2
10
-1
10
0
10
1
பைடு நூலகம்
比例环节伯德图
5.2.2惯性环节
1 惯性环节增益为 G(s) Ts 1 1 对数幅频 L( ) 20 lg 20 lg 1 (T ) 2 1 (T ) 2 特性:
1 当 (T )2 1 时,即 T 1 L( ) 20 lg1 0 T 1 2 当 (T ) 1 时,即 T
5.1.1频率响应
H ( j) A()e j ()
拉氏反变换后为 1 j ( ) 1 1 j ( ) Am A( ) e e j2 s j s j 1 j[t ( )] j[t ( )] Am A( ) e e j2 Am A() sin[t ()]
1 1 Am H (s) Am H (s) s j s j s j s j s j s j
1 H ( j ) H ( j ) Am j 2 s j s j
10(s 3) G(s) 1 1 2 1 s s 1 s s 1 2 2 2
解:将G(s)变换成典型环节之积形式有
1 1 1 1 G( s) 10 3 s 1 1 1 2 1 3 s 比例 s 1 s s 1 一阶微分积 2 2 2
相关主题