当前位置:文档之家› 氨氮废水的几种处理技术

氨氮废水的几种处理技术

氨氮废水的几种处理技术王昊 周康根(中南大学冶金科学与工程学院 长沙410083) 摘 要 介绍了氨氮废水处理的各种方法及原理,综述了目前国内外氨氮废水处理的研究现状及进展,并提出今后氨氮废水处理应着重考虑的几个问题。

关键词 氨氮废水 处理 研究进展The R esearch Development on the T reatment of Ammonia -nitrogen W astew aterW ANG Hao ZHOU K ang gen(School o f Metallurgical Science and Engineering ,Central South Univer sity Changsha 410083)Abstract The methods and principles of treating amm onia nitrogen wastewater are introduced ,the research status and developments athome and abroad are described and several problems in the treatment for amm onia -nitrogen wastewater considered in the future are put for 2ward.K eyw ords amm onianitrogen wastewater treatment research development 氨氮是水体污染因素中重要的污染物,主要来自城镇生活污水、各种工业废水及化学肥料和农家肥料等。

水体中氮含量超标,不仅使水环境质量恶化,引起富营养化,还对人类以及动植物有严重危害。

我国从20世纪80年代开始废水处理过程中脱氮的研究,但目前大多数污水处理厂仍未考虑脱氮的问题。

因此对废水中氮的去除,特别是氨氮的去除需要引起高度的重视。

本文介绍几种氨氮废水处理方法。

1 氨氮废水处理的主要方法1.1 吹脱法氨吹脱工艺[1,2]是将水的pH 值提到10.511.5的范围,在吹脱塔中反复形成水滴,通过塔内大量空气循环,气水接触,使氨气逸出。

这种方法广泛用于处理中高浓度的氨氮废水,常需加石灰,经吹脱可以回收氨气。

夏素兰[3]从相平衡与气液传质速率两方面分析了氨氮吹脱工艺的影响因素,认为调节pH 值是改变吹脱体系化学平衡的重要手段,喷淋密度和气液比都是重要影响因素。

胡继峰等[4]认为去除率要达到90%以上,pH 值必须大于12且温度高于90℃。

胡允良等[5]实验室研究确定氨氮质量浓度为7.27.5g/L 废水的最佳吹脱条件为:pH 值为11,温度为40℃,吹脱时间2h ,出水中氨氮的质量浓度为307.4mg/L 。

黄骏等[6]采用吹脱法处理三氧化二钒生产的高浓度氨氮废水,在实验室试验的基础上进行工业试验,出水达标排放。

吹脱法主要用于处理高浓度的氨氮废水,其优点是设备简单,可以回收氨,但也存在许多缺点,主要有:①环境温度影响大,低于0℃时,氨吹脱塔实际上无法工作;②吹脱效率有限,其出水需进一步处理;③吹脱前需要加碱把废水的pH 值调整到11以上,吹脱后又须加酸把pH 值调整到9以下,所以药剂消耗大;④工业上一般用石灰调整pH 值,很容易在水中形成碳酸钙垢而在填料上沉积,可使塔板完全堵塞;⑤吹脱时所需空气量较大,因此动力消耗大,运行成本高。

1.2 化学沉淀(M AP )法在一定的pH 条件下,水中的Mg 2+、HPO 43-和NH 4+可以生成磷酸铵镁沉淀[7],而使铵离子从水中分离出来。

影响沉淀效果的因素有沉淀剂种类及配比、pH 值、废水中的初始氨的浓度、干扰组分等。

有研究表明沉淀法去除废水中氨氮的pH 值为10.0,物质的量之比Mg ∶N =1.2、P ∶N =1.02时沉淀效果最好,氨氮去除率达到90%[8]。

赵庆良等[9]研究表明,MgCl 2・6H 2O 和Na 2HPO 4・12H 2O 组合沉淀剂优于MgO 和H 3PO 4组合,垃圾渗滤液中的氨氮质量浓度可由5618mg/L 降低到65mg/L 。

李芙蓉等[10]采用氧化镁和磷酸作为沉淀剂去除煤气洗涤循环水中高浓度的氨氮,效果良好。

李才辉等[11]对M AP 法处理氨氮废水的工艺进行优化,研究表明氨氮的去除率随着反应时间的增加而增加,随着Mg ∶N 比值的增加而增加。

刘小澜[12]探讨了不同操作条件对氨氮去除率的影响,在pH 值为8.59.5的条件下,投加的药剂Mg 2+∶NH 4+∶PO 43-(摩尔比)为1.4∶1∶0.8时,废水氨氮的去除率达99%以上,出水氨氮的质量浓度由2g/L 降至15mg/L 。

国外对用化学沉淀法去除废水中的氨氮也有较多研究。

S tratful 等[13]详细研究了影响磷酸铵镁沉淀及晶体生长的因素,得出4点结论:①过量的铵离子对形成磷酸铵镁沉淀有利;②镁离子可能是形成磷酸铵镁沉淀的限制因素;③如果要想从废水中回收磷酸铵镁,需要得到比较大的晶体颗粒,则至少需要3h 的结晶时间;④沉淀的pH 值应大于8.5。

Battistoni 等[14]进行了用化学沉淀法从废水厌氧消化后的上清液中同时回收氮和磷的研究。

废水厌氧消化过程中,有机物中的氮和磷被微生物分解为无机的磷酸盐和氨氮,添加MgO 可以生成磷酸铵镁沉淀可回收磷和氮。

Lind 等[15]则进行了用磷酸铵镁沉淀法从人的尿液中回收营养物质的研究,可以回收65.0%80.0%的氮。

・7・2006年第32卷第11期N ovenmber 2006 工业安全与环保Industrial Safety and Environmental Protection化学沉淀法的最大优点是可以回收废水中的氨,所生成的沉淀可以作为复合肥而利用。

存在的主要问题是沉淀剂的用量较大,需要对废水的pH进行调整,另外有时生成的沉淀颗粒细小或是絮状体,工业中固液分离有一定困难。

1.3 折点氯化法在含氨氮的废水中投氯后,有如下反应[16]: Cl2+H2O H OCl+H++Cl- NH4++H OCl NH2Cl(一氯胺)+H2O+H+ NH2Cl+H OCl NHCl2(二氯胺)+H2O NHCl2+H OCl NCl3(三氯胺)+H2O NH4++3H OCl N2↑+5H++3Cl+3H2O通常一氯胺和二氯胺称为化合余氯,次氯酸称为余氯。

当投氯量达到氯与氨的摩尔比值1∶1时,化合余氯即增加,余氯下降物质的量的比达到1.5∶1时,(质量比7.6∶1时),余氯下降到最低点,此即“折点”[17]。

在折点处,基本上全部氧化性的氯都被还原,全部氨都被氧化,进一步加氯就会产生自由余氯。

该法与pH值、温度、接触时间及氨和氯的初始比值有关。

折点加氯法最大的优点是理论上通过适当的控制,可以把氨氮完全去除,但因加氯量大,费用高,以及产酸增加总溶解固体等原因,目前此方法只能作为氨氮废水的后续处理,以及给水处理或饮用水处理。

1.4 离子交换法离子交换实际是不溶性离子化合物(离子交换剂)上的可交换离子与溶液中的其它同性离子的交换反应,是一种特殊的吸附过程。

用离子交换法去除氨氮时,常用离子交换剂沸石、活性炭等,也有研究采用合成树脂。

但天然离子交换剂价格便宜且再生容易;采用合成树脂,预处理工序和再生系统均较复杂,且树脂寿命短,应用上受一定限制。

肖举强等[18]证明活化沸石去除氨氮的效果优于活性炭。

陶颖[19]等采用天然沸石去除污水中氨氮效果明显,成功将污水深度处理。

刘玉亮等[20]的静态、动态和再生实验结果表明,斜发沸石静态饱和吸附量为3.1g/100g,再生后有效寿命可达140h以上。

R ozic等[21]也进行了用沸石和粘土类矿物去除氨氮的试验。

研究表明,用天然沸石为离子交换剂时,其对氨氮的去除能力与水中氨氮的初始质量浓度有关,在初始质量浓度小于100mg/L时,氨氮的去除率可以达到60.0%以上,且随初始质量浓度的降低去除率增加,当初始质量浓度超过100mg/L时,氨氮的去除率迅速下降。

刘宝敏等[22]考察了强酸性阳离子交换树脂对高浓度焦化废水中氨氮的吸附行为。

实验结果表明每g树脂对氨氮的最大吸附量可大于25mg,失效的树脂用0.5m ol/L稀硫酸再生后,可连续使用。

虽然离子交换剂去除废水中的氨氮取得了一定的效果,但由于存在其交换容量有限,再生后的交换剂交换容量下降,有些沸石使用前需要改性,改性过程产生的酸或碱性废水需要进一步处理等问题需要解决,所以其研究基本停留在实验室阶段。

1.5 生物处理法目前,生物法是实际应用中使用最广泛的处理低浓度氨氮废水的方法。

生物脱氮是在微生物的作用下,将有机氮和氨态氮转化为N2和N x O气体的过程,其中包括硝化和反硝化两个反应过程。

硝化是废水中的氨态氮在好氧条件下,通过好氧细菌(亚硝酸菌和硝酸菌)的作用,被氧化成亚硝酸盐(NO2-)和硝酸盐(NO3-)的反应过程。

反硝化即脱氮,是在缺氧条件下,通过脱氮菌的作用,将亚硝酸盐和硝酸盐还原成氮气,该反应过程中,反硝化菌需要有机碳源(如甲醇)作电子供体,利用NO3-中的氧进行缺氧呼吸。

刘柒变[23]研究表明用生物法可以有效地去处焦化废水中的氨氮,pH值是影响处理效果的主要因素,硝化过程的最佳pH值在89之间,反硝化过程为7.58.5。

操作温度、C/N比及污泥龄也是影响因素。

此外以A2/O工艺效果最好。

李峰[24]在序批式反应器(S BR)中运用固定化细胞技术处理氨氮废水,试验表明S BR具有良好的去除废水中氨氮的能力,氨氮去除率在99.7%以上。

K im等[25]提出的上流式厌氧过滤器(up flow anaerobic fil2 ter)是一种用于小型城市污水处理厂的脱氮装置,该装置内同时有厌氧和耗氧过程,对氮的去除负荷比普通的一段活性污泥法高2倍。

德国的R olf等[26]也提出了类似的用于小型污水处理厂的除氮装置。

S iegrist等[27]研究了用生物转盘去处固体废弃物卫生填埋过程中产生的渗滤液中氨氮的方法取得了较好的效果。

Liu[28]报道在用于反硝化的缺氧和厌氧反应器中填充纤维状载体,这种载体作为反硝化细菌的生长载体,而好氧部分仍采用传统的活性污泥法。

这种新工艺与传统工艺相比,需氧量和需碳量分别降低25%和40%,氮的去除率增加10%。

生物处理含氨氮废水目前存在的主要问题是硝化反硝化所需时间较长,硝化过程所需的氧气量大,曝气时间长,对于某些缺乏有机物的无机废水需要另加碳源也增加了处理成本,反硝化过程相当复杂,实际应用时不易控制,有时,废水中缺乏足够的C OD(电子供给体)将NO-2、NO-3反硝化成N2排入大气,容易造成排放水中NO2-、NO3-的残留,同样对环境造成污染,因此在一定程度上限制了它的应用。

相关主题