当前位置:文档之家› 现代食品杀菌技术

现代食品杀菌技术

食品高新技术黄磊(塔里木大学生命科学学院新疆阿拉尔 843300)摘要本文介绍了食品高新技术的应用及其研究方法关键词高新技术食品杀菌微波杀菌保鲜食品杀菌高新技术(一)食品加工目的之一是保护与保存食品,杀死微生物,钝化酶类等。

食品腐败变质的主要原因是某些微生物和菌类的存在,每年因此而造成很大的损失,灭菌是食品加工的必经工序。

然而传统的热力灭菌不能将食品中的微生物全部杀灭,特别是一些耐热的芽孢杆菌;同时加热会不同程度破坏食品中的营养成分和食品的天然特性。

为了更大限度保持食品的天然色、香、味和一些生理活性成分,满足现代人的生活要求,新型的灭菌技术应运而生,本文主要介绍了当今世界食品领域的杀菌新技术及其在我国的发展应用现状。

1 微波杀菌技术微波是一种高频电磁波,当它在介质内部起作用时,水、蛋白质、脂肪、碳水化合物等极性分子受到交变电场的作用而剧烈振荡,引起强烈的摩擦而产生热,这就是微波的介电感应加热效应。

这种热效应也使得微生物内的蛋白质、核酸等分子结构改性或失活;高频的电场也使其膜电位、极性分子结构发生改变;这些都对微生物产生破坏作用从而起到杀菌作用。

利用微波杀菌,处理时间短,容易实现连续生产,不影响原有的风味和营养成分;并由于其穿透性好的特点,可进行包装后杀菌。

有报导利用2450 MHz的微波处理酱油,可以抑制霉菌的生长及杀灭肠道致病菌。

用于啤酒的灭菌,取得良好的效果,且使啤酒风味保持良好。

用于处理蛋糕、月饼、切片面包和春卷皮,结果表明,这些食品的保鲜期由原来3d-4d,延长到30d。

吴晖报导微波杀菌与一般加热灭菌法相比,在一定的温度下,微波灭菌缩短了细菌和真菌的死亡时间;以枯草芽抱杆菌为材料,微波法的D100 为0.65,而对照巴氏法的则为5.5。

在相同条件下微波灭菌的致死温度比常规加热灭菌时的低。

国外在60、70 年代就开始考虑将微波技术应用到鲜奶、啤酒、饼干、面包、猪、牛肉的加工等实际生产中。

到90 年代,工艺参数和优化已成为研究的热门课题。

2 高压杀菌技术所谓高压杀菌是指将食品放人液体介质中,加100MPa-1000MPa 的压力作用一段时间后,如同加热一样,杀灭食品中的微生物的过程。

高压灭菌通常认为蛋白质在高压下立体结构(四级结构)崩溃而发生变性而使细菌失活,但也有人认为凡是以较弱的结合构成的生物体高分子物质如核酸、多糖类、脂肪等物质或细胞膜都会受到超高压的影响,尤其通过剪切力而使生物体膜破裂,从而使生物体的生命活动受到影响甚至停止,这就可以达到灭菌、杀虫和效果。

高压灭菌避免了热处理而出现的影响食品品质的各种弊端,保持了食品的原有风味、色泽和营养价值。

由于是液体介质的瞬间压缩过程,灭菌均匀,无污染,操作安全,且较加热法耗能低,减少环境污染。

励建荣等研究了经高压处理后的果汁和蔬菜汁,试验证实了高压处理后能达到杀菌效果,而且Vc损失很少,残存酶活只有4%,色香味等感官指标不变,其综合效果优于热力杀菌;动物食品也能达到杀菌效果。

目前,国外已将其用于肉、蛋、大豆蛋白、水果、香料、牛奶、果汁、矿泉水、啤酒等物品的加工中。

我国在该技术的开发应用方面仅仅处于实验室研究阶段,尚未有批量生产的报道。

3 高压脉冲电场杀菌技术高压脉冲技术用于食品灭酶灭菌,主要原理是基于细胞结构和液态食品体系间的电学特性差异。

当把液态食品作为电介质置于电场中时,食品中微生物的细胞膜在强电场作用下被电击穿,产生不可修复的穿孔或破裂,使细胞组织受损,导致微生物失活。

证实在脉冲电场强度为12-40 Kv/cm,脉冲时间为20 s-18 s 的条件下,可有效地对食品进行灭菌,且以双矩形波最为有效。

邓元修等利用脉冲高压杀灭酵母和大肠杆菌,取得良好的实验结果,且能耗低,对试液温升小于2℃,因而可有效保存食品的营养成分和天然特征。

利用脉冲电场处理大豆,可实现灭酶脱腥,并有效的保留大豆的香气。

该技术是一种常温下非加热杀菌的新技术,运用该技术应综合考虑场强的大小,杀菌时间、食品的pH值、对细菌的种类等因素,以确定最佳方案。

目前该技术在国际上正处于实验室研究和发展阶段,进一步成熟后很有可能弥补传统杀菌法的不足,给液态食品工艺带来一场变革]。

4 脉冲强光杀菌技术脉冲强光杀菌是利用强烈白光闪照的杀菌技术,其系统主要包括动力单元和灯单元,动力单元为惰性气体灯提供能量,灯便放出只持续数百微秒,其波长由紫外光区域至近红外光区域的强光脉冲,其光谱与太阳光相似,但比阳光强几千倍至数万倍。

由于只处理食品表面,从而对食品营养成分影响很小,JosephDunn等人研究表明,脉冲强光对多数微生物有致死作用。

周万龙等研究表明:光脉冲输人能量为700J,光脉冲宽度小于800us ,闪照30次后,对枯草芽泡杆菌、大肠杆菌、酵母都有较强的致死效果。

对溶液中淀粉酶、蛋白酶的活性也有明显的钝化作用。

脉冲宽度小于800 s,其波长由紫外光区域至红外光区,起杀菌作用的波段可能为紫外光区,其它波段可能有协同作用;脉冲强光杀菌对菌悬液的电导率影响不大,引起电位的变化,其原因及对微生物形态结构的影响尚待进一步研究。

5. 辐射杀菌技术辐射杀菌是运用χ射线、у 射线或电子高速射线照射食品,引起食品中的生物体产生物理或化学反应,抑制或破坏其新陈代谢和生长发育,甚至使细胞组织死亡从而达到灭菌消毒,延长食品贮存销售时间的目的。

辐射杀菌几乎不产生热量,可保持食品在感官和品质方面的特性,并适合对冷冻状态的食品进行杀菌处理。

与传统的加热法相比更易于准确控制,且耗能低。

世界卫生组织已将辐射法纳为安全有效的食品处理方法并制定了相应的标准。

辐射杀菌已在许多国家得到政府的认可并批准使用。

在西欧国家运用辐射法对鸡肉、对虾和青蛙腿灭菌;同时辐射法也广泛应用于各种调料的消毒。

美国已用在草莓、葡萄、西红柿、鸡肉等方面,受到公众的普遍接受。

在我国已对稻谷小麦、玉米、蔬菜、水果、鱼肉辐照保藏技术取得成效,日益显示出广阔的前景,但总的来说辐照法在我国食品工业的运用起步时间较晚,人们对它的作用和优点认识还不深,应加大这方面投入和研究,使之赶上国际先进水平。

6 .臭氧杀菌技术臭氧是氧的同素异形体,具有极强的氧化能力,在水中的氧还原电位为2.07V,仅次于氟电位2.87V,居第二位,它的氧化能力高于氯(1.36 V)、二氧化氯(1.5V)。

正因为臭氧具有强烈的氧化性,所以对细菌、霉菌、病毒具有强烈的杀灭性而且在食品的脱臭、脱色等方面也展示了广阔的前景。

其杀菌机理一般认为:臭氧很容易同细菌的细胞壁中的脂蛋白或细胞膜中的磷脂质、蛋白质发生化学反应,从而使细菌的细胞壁和细胞受到破坏(即所谓的溶菌作用)细胞膜的通透性增加,细胞内物质外流,使其失去活性,臭氧破坏或分解细胞壁,迅速扩散到细胞里,氧化了细胞内的酶或DNA、RNA,从而致死病原体。

所以食品在采用气体置换包装,真空包装、封人脱氧包装和封人粉末酒精包装时,填充了臭氧以杀灭酵母菌可以解决这些包装的食品的变质问题。

臭氧在矿泉水、汽水、果汁等生产过程中,对盛装容器、管路、设备、车间环境的消毒也取得令人满意的效果。

7 .远红外照射杀菌技术远红外射线与传导加热相比,在致死温度以上时菌的生存率显著下降。

在40℃以下(致死温度以下)的条件下,热能越高菌的生存率越低。

杨瑞金报道将细菌、酵母和霉菌悬浮液装人塑料袋中进行远红外线杀菌,其对照功率分别为6KW、8KW、10KW 和12KW。

结果表明:照射10Min 能使不耐热细菌全部杀死。

(能使耐热细菌的数量降低1O5-108 以上;对于酵母菌采用8KW 以上的功率,就足以达到抑制的需求;对于霉菌,8KW以上的照射功率照射10Min 就可以将活菌完全杀死)除了上述的几种技术,在国际上还出现了脉冲磁场杀菌、电阻加热杀菌、电离辐射以及在纯净水生产中应用的纳滤膜技术,都在食品工业的不同领域显示出潜在的研究和应用价值。

在我国食品工业中大多数产品是利用传统的热力杀菌,由于生产技术的落后,致使一些产品,特别是一些保健产品的质量、档次不高,因此,要加速我国的食品生产技术的更新,来提高产品的档次及在国际市场的竞争力。

微波能在肉类制品杀菌保鲜的应用一、概述随着人民生活水平的不断提高和消费观念的变化,对食品工业的产品结构、质量品质、安全卫生等提出了越来越高的要求,特别是各类传统、方便的袋包装食品,更是成为当今食品市场的一个消费热点。

但是在这些食品的生产、保存、运输和销售过程中极易污染变质,从而失去商业价值。

虽然国家食品卫生法对各类食品的卫生指标都作了严格规定,但在一般情况下,是很难符合标准的。

这不仅大大影响了商品的货架期,而且对保障人民身体健康也是极为不利的。

尽管通常可以采用高温干燥、烫漂、巴氏灭菌、冷冻以及防腐剂等常规技术来实现对食品的杀虫灭菌与保鲜。

但这些设备大都庞大,处理时间长,灭菌不彻底或不易实现自动化生产,同时往往影响食品的原有风味和营养成份。

而微波杀虫灭菌是使食品中的虫菌等微生物,同时受到微波热效应与非热效应的共同作用,使其体内蛋白质和生理活动物质发生变异,而导致微生物体生长发育延缓和死亡,达到食品杀虫、灭菌、保鲜的目的。

二、微波杀菌保鲜的机理微波杀菌、保鲜就是希望将食品经微波能处理后使食品中的菌体、虫菌等微生物丧失活力或死亡,保证食品在一定保存期内含菌量仍不超过食品卫生法所规定的允许范围,从而延长其货架期。

以下简述微波杀菌保鲜的可能机制:众所周知,细菌、成虫与任何生物细胞一样,是由水、蛋白质、碳水化合物、脂肪和无机物等复杂化合物构成的一种凝聚介质。

其中水是生物细胞的主要成份,含量在75*85%,因为细菌的各种生理活动都必须有水参与才能进行,而细菌的生长繁殖过程,对各种营养物的吸收是通过细胞膜质的扩散、渗透吸收作用来完成的。

在一定强度微波场的作用下,食品中的虫类和菌体也会因分子极化驰豫,同时吸收微波能升温。

由于它们是凝聚态介质,分子间的强作用力加剧了微波能向热能的能态转化。

从而使体内蛋白质同时受到无极性热运动和极性转动两方面的作用,使其空间结构变化或破坏而使其蛋白质变性。

蛋白质变性后,其溶解度、粘度、膨胀性、渗透性、稳定性都会发生明显变化,而失去生物活性。

另一方面,微波能的非热效应在灭菌中起到了常规物理灭菌所没有的特殊作用,也是赞成细菌死亡原因之一。

微波杀菌、保鲜是微波热效应和非热效应共同作用的结果。

微波的热效应主要起快速升温杀菌作用;而非热效应则使用微生物体内蛋白质和生理活性物质发生变异,而丧失活力或死亡。

因此,微波杀菌温度低于常规方法,一般情况下,常规方法杀菌温度要120℃*130℃,时间约 1 小时,而微波杀菌温度仅要70℃*105℃,时间约90*180秒。

三、微波杀菌保鲜的特点1、时间短、速度快常规热力杀菌是通过热传导,对流或辐射等方式将热量从食品表面传至内部。

相关主题