当前位置:文档之家› 离子液体及其研究进展

离子液体及其研究进展

正离子部分是有机阳离子,如:1-丁基-3-甲基咪唑[bmim]+,1-乙基-3-甲基咪唑[emim]+,体积比无机离子大,因此有较低的熔点[3]。

阳离子中电荷越分散,分子的对称性越低,生成化合物的熔点越低。

阴离子的大小对熔点有较大的影响。

大的阴离子,与阳离子的作用力小,晶体中的晶格能小。

因此,易生成熔点低的化合物。

2.2 溶解性离子液体的分子结构还影响它们对化合物的溶解性能。

例如,[bmim]+BF-4是亲水的,而[bmim]+PF-6是疏水的,与水不互溶。

选择性地溶解催化剂但与反应物和产物不溶的离子液体是很有价值的,因为这样,产物的分离简单,可节省能源。

有机化合物在一些离子液体中也有一定的溶解度。

Bonhote等[3]研究了有机溶剂在离子液体[emim]+CF3SO-3中的溶解性。

二氯甲烷、四氢呋喃可与其互溶,而甲苯、二氧六环是不溶的。

Waffensehmidt等[4]的研究结果表明,调节阳离子中烷基链的长短可改变溶解度。

如卜辛烯在(MeEt3N)+(P-MePh-SO3)-溶,但溶解在[Me(n-C6H11)3N]+(P-MePhSO3)-中。

2.3 热稳定性[5]离子液体的热稳定性分别受杂原子-碳原子之间作用力和杂原子-氢键之间作用力的限制,因此与组成的阳离子和阴离子的结构和性质密切相关。

例如在氧化铝上测定的多种咪唑盐离子液体的起始热分解温度大多在400℃左右,同时也与阴阳离子的组成有很大关系。

当阴离子相同时,咪唑盐阳离子2位上被烷基取代时,离子液体的起始热分解温度明显提高;而3位氮上的取代基为线型烷基时较稳定。

相应的阴离子部分稳定性顺序为:PF6>Beti>Im≈BF4>Me≈AsF6≥I、Br、Cl。

同时,离子液体的水含量也对其热稳定性略有影响。

2.4 密度离子液体的密度与阴离子和阳离子有离子液体及其研究进展吴清文 天津工业大学材料化工学院 300160前言离子液体是由一种含氮杂环的有机阳离子和一种无机阴离子组成的盐,在室温或室温附近温度下呈液态,又称为室温离子液体、室温熔融盐、有机离子液体等。

与传统的有机溶剂和电解质相比,离子液体具有一系列突出优点:(1)几乎没有蒸气压、不挥发、无色、无味;(2)有较大的稳定温度范围,较好的化学稳定性及较宽的电化学稳定电位窗口;(3)通过阴阳离子的设计可调节其对无机物、水、有机物及聚合物的溶解性,并且其酸度可调至超酸。

最初的离子液体主要用于电化学研究,近年来在作为环境友好的溶剂方面有很大的潜力,故也称之为“绿色溶剂”。

1 离子液体的组成目前被人们关注的液体离子的种类比较多,但大体上说起来,其中的阳离子主要有以下四类[1,2]:烷基季铵离子;烷基季鳞离子:N-烷基取代吡啶离子;1,3-二烷基取代咪唑离子。

阴离子则可以是AlC1-4、BF-4、PF-4、CF3COO-、CF3SO-3、(CF3SO2)2N-、SbF-等有机离子和配合物离子。

2 离子液体的物理化学特质2.1 熔点离子液体是低熔点的季铵、膦盐。

很大关系。

比较含不同取代基咪唑阳离子的氯铝酸盐的密度发现,密度与咪唑阳离子上N-烷基链长度呈线性关系,随着有机阳离子变大,离子液体的密度变小。

这样可以通过阳离子结构的轻微调整来调节离子液体的密度。

阴离子对密度的影响更加明显,通常是阴离子越大,离子液体的密度也越大。

因此设计不同密度的离子液体,首先选择相应的阴离子来确定大致范围,然后认真选择阳离子对密度进行微调。

2.5 酸碱性[6]离子液体的酸碱性实际上由阴离子的本质决定。

将Lewis酸如A1C13加入到离子液体[bmim]C1中,当A1C13的摩尔分数x(A1C13)<0.5时,离子液体呈碱性;当x(A1C13)=0.5时,为中性,阴离子仅为A1C1-4;当x (A1C13)>0.5时,随着A1C13的增加会有Al2Cl-7和Al3Cl-10等阴离子存在,离子液体表现为强酸性。

研究离子液体的酸碱性时,必须注意其“潜酸性”和“超酸性”。

例如把弱碱吡咯或N、N’-二甲基苯胺加入到中性[bmim]+A1C1-4中,离子液体表现出很明显的潜酸性。

把无机酸溶于酸性氯铝酸盐离子液体中,可观察到离子液体的超强酸性。

与传统的超酸系统相比,超酸性离子液体处理起来更安全。

综上所述离子液体具有独特的物理化学特性,而且还可以在一定程度上进行调变。

但总体上讲,对离子液体的物理化学性质还了解得相对较少,这也成为今后离子液体研究的主要内容。

3 离子液体的合成离子液体种类繁多,改变阳离子/阴离子的不同组合,可以设计合成出不同的离子液体。

离子液体合成大体上有两种基本方法:直接合成法和两步合成法[7]。

3.1 直接合成法通过酸碱中和反应或季铵化反应一步合成离子液体,操作经济简便,没有副产物,产品易纯化。

例如,硝基乙胺离子液体就是由乙胺的水溶液与硝酸中和反应制备。

具体制备过程是:中和反应后真空除去多余的水,为了确保离子液体的纯净,再将其溶解在乙腈或四氢呋喃等有机溶剂中,用活性炭处理,最后真空除去有机溶剂得到产物离子液体。

最近,Hirao[8]等用此法合成了一系列不同阳离子的四氟硼酸盐离子液体。

另外,通过季铵化反应也可以一步制备出多种离子液体[3],如1-丁基-3-甲基眯唑翁盐[bmim]+[CF3SO3]-、[bmim]+C1-等。

3.2 两步合成法如果直接法难以得到目标离子液体,就必须使用两步合成法。

首先,通过季铵化反应制备出含目标阳离子的卤盐([阳离子]X型离子液体);然后用目标阴离子Y-置换出X-离子或加入Lewis酸MXy来得到目标离子液体。

在第二步反应中,使用金属盐-Y(常用的是AgY或NH4Y)时,产生AgX沉淀或NH3、HX气体而容易除去;加入强质子酸HY,反应要求在低温搅拌条件下进行,然后多次水洗至中性,用有机溶剂提取离子液体,最后真空除去有机溶剂得到纯净的离子液体。

应特别注意的是,在用目标阴离子(Y-)交换X-阴离子的过程中,必须尽可能地使反应进行完全,确保没有X-阴离子留在目标离子液体中,因为离子液体的纯度对于其应用和物理化学特性的表征至关重要。

高纯度二元离子液体的合成通常是在离子交换器中利用离子交换树脂通过阴离子交换来制备。

另外,直接将Lewis酸(MXy)与卤盐结合,可制备[阳离子][Mn Xny+1]型离子液体,如氯铝酸盐离子液体[5]的制备就是利用这个方法。

4 离子液体的应用前景1982年,Wilkes等首次将离子液体[emim]CI和[mbpy]Cl应用于Fdedel-Crafts酰基化反应,从此离子液体的应用研究得以快速发展,在有机催化、液-液萃取、生物催化、材料等方面都得到了应用,而且在许多领域中显示出了巨大的应用潜力。

4.1 在分离过程中的应用分离提纯回收产物一直是合成化学的难题。

用水提取分离只适用于亲水产物,蒸馏技术也不适宜用于挥发性差的产物,使用有机溶剂又会引起交叉污染。

而离子液体具有其独特的理化性能,非常适合作为分离提纯的溶剂[9-13]。

尤其是在液-液提取分离上,离子液体能够溶解某些有机化合物、无机化合物和有机金属化合物,而与大量的有机溶剂不混溶,其本身非常适合作为新的液-液提取的介质。

研究还发现,非挥发性有机物可用超临界CO2从离子液体中提取,CO2溶在液体里促进提取,而离子液体并不溶解在CO2中,因此,可以回收纯净的产品[13]。

最近研究发现,离子液体还可用于生物技术中的分离提取,如从发酵液中回收丁醇,采用蒸馏、全蒸发等方法都不经济,而离子液体因其不挥发性以及与水的不混溶性非常适合于从发酵液中回收丁醇[10]。

4.2 离子液体在有机反应中的应用很多离子液体对有机反应具有催化作用.且由于离子液体对有机物有很好的溶解性,因此可以兼作催化剂和反应介质,达到反应-分离相耦合的效果,能够达到传统溶剂难以比拟的效果。

4.3 离子液体在催化中的应用室温离子液体目前研究最多的是取代传统的有机溶剂在催化和有机反应中充当反应介质和催化材料,这是离子液体研究的热点。

作为反应介质,离子液同其他有机溶剂比较具有蒸汽压低、毒性小、热稳定性好、不易燃烧和爆炸、溶解性能独特,反应产物分离简单等优点。

在过渡金属配合物催化的均相反应体系中,使用合适的配合物可以将催化剂和离子液体紧密结合在一起,达到催化剂的液相固载和回收。

由于离子液体的纯离子环境,化学反应进行在离子液体中其机理和途径可能不同于传统的分子溶剂,这为深层次探讨反应机理、建立新的合成路线提供了契机。

离子液体还是一种可设计溶剂,在催化反应中,可以根据具体的需求将离子液体设计为酸性的或碱性的、亲水的或亲油的,甚至可以针对某一个具体的化合物设计为高溶解度的或低溶解度的。

这就使离子液体作为催化和有机反应的介质更普遍、更自由。

4.4 在电化学中的应用离子液体是完全由离子组成的液态电解质。

20年前Osteryoung等就在离子液体中进行了电化学研究,后来的研究展现了离子液体宽阔的电化学电位窗、良好的离子导电性等电化学特性,使其在电池、电容器、晶体管、电沉积等方面具有广泛的应用前景[9-13]。

离子液体用作电解液的缺点是粘度太大,但只要混入少量有机溶剂就可以大大降低其粘度,并提高其离子电导率,再加上其高沸点、低蒸气压、宽阔的电化学稳定电位窗等优点,使其非常适合用于光电化学太阳能电池的电解液。

同时,由于离子液体固有的离子导电性、不挥发、不燃,电化学窗口比电解质水溶液大许多,可以减轻自放电,作电池电解质不用像熔盐一样的高温,可用于制造新型高性能电池。

4.5 在功能材料方面的应用离子液体兼有透光和导电的特性,使其可能成为一类新型的软光学材料。

Seddon等利用过渡金属电子密集特性,将适当的阳离子和富电子的SnBr6阴离子结合,构成一类具有高折光率的液体,用于一些特定矿物的组成鉴定。

Wilkes等合成了一系列含硫阴离子的离子液体,这些离子液体显示出很强的三阶非线性光学行为,在非线性光学材料及全光器件方面有潜在的用途[14]。

澳大利亚的研究人员发现,离子液体可以极大地提高人造肌肉的功能(如肌肉的伸缩力量)。

利用溶解性能独特的醚键功能化的咪唑盐离子液体,还可以处理核苷等生物大分子,这为某些抗癌药物的寻找和合成提供了很好的思路[15]。

英国研究人员将憎水性离子液体用作一些药物的储存剂,构成可控药物释放系统。

通过调整烷基咪唑阳离子上烷基侧链的长短,可调控药物释放速率。

5 总结与展望离子液体作为一种新型的绿色环保溶剂,在有机合成、导电、萃取分离等领域的应用研究正在兴起,并已引起越来越多的研究者的浓厚兴趣。

当前,一方面离子液体的应用已经处于工业试验阶段,即将进入工业应用;另一方面也可以说对离子液体的研究才刚刚开始,因为离子液体种类很多,而且可以说每一个化学反应在离子液体中进行都有可能取得与传统化学不同的令人惊异的结果,巨大的化学新发现宝藏有待进一步去开发。

相关主题