当前位置:文档之家› 大型风机震动分析及解决方法

大型风机震动分析及解决方法

大型风机震动分析及解决方法
摘要:基于我厂某台瓦斯排送机一直震动较大,影响设备运行,本文就其震动原因进行初步分析,并提出解决方法,以使检修人员高度重视关键设备,提高设备安全运行效率。

关键词:排送机叶轮动平衡
Abstract: There is a gas exhauster has greater vibrations in our factory, that effect the equipment’s operation. This article analysis the vibratio ns, and puts forward the solving methods, in order to make the maintenance personnel to pay more attention to the key equipment, and improve safe efficiency.
Key words: Exhauster,Impeller, Dynamic balance.
引言
页岩炼油厂是我公司战略转型的重点,主要生产页岩油。

衡量其生产能力的首先是页岩的处理量,属于干馏炉自身原因;其次就是回收系统的能力大小,在回收系统中瓦斯排送机是这个系统的心脏。

作为回收系统的瓦斯动力来源--瓦斯排送机能力的大小直接影响到页岩的处理量能否进一步提升。

1、现有瓦斯排送机状态
页岩炼油厂共有四个部,每部两台瓦斯排送机,一台运行,一台备用,在2004年以前,各台排送机风量为140000M3/h,各台排送机都已经满负荷工作,不能满足生产需要,基于此原因厂决定对各部其中一台进行修改,以提高风量,具体方法为将风机叶轮由原来八片增加到十二片。

改造后各部运行改造完的排送机,其能力均有不同能力的提升,从而直接提高页岩油产量。

而C部2号排送机从2004年运行以来,在接近满负荷的情况下震动很剧烈,使得叶轮轴的轴瓦数次被震坏,到2006年末,一共损坏轴瓦达到4次,导致轴头基础螺栓断3次。

不得不停机维修,使用排量较小的1号排送机。

1号排送机风量为140000M3/h,2号为150000M3/h。

2 对生产的直接影响
直接降低风量影响了产量,因降低风量约7%从而降低处理量7%,直接造成产量的被迫减产。

每次维修时间为换瓦5天,维修基础15天。

仅此一项,直接减产以每天产100吨计算,100×7%×(5×4+15×3)=455吨,以目前原油每吨
5000元计算,直接损失为455×5000=2275,000元。

3 分析原因
叶轮轴的轴瓦被震坏甚至导致轴头基础螺栓断,其主要原因很可能为改造后的叶轮动平衡被破坏。

3.1叶轮产生不平衡问题的主要原因
叶轮在使用中产生不平衡的原因可简要分为两种:叶轮的磨损与叶轮的结垢。

造成这两种情况与排送机排送物质属性有关,干性物质是引起叶轮不平衡的原因以磨损为主,而湿性物质影响叶轮不平衡的原因以结垢为主。

现分述如下:
⑴.叶轮的磨损
干性物质是瓦斯中部分大颗粒的粉尘,特别是少量大颗粒和许多微小的粉尘颗粒随同高温、高速的烟气一起通过排送机,使叶片遭受连续不断地冲刷。

长此以往,在叶片出口处形成刀刃状磨损。

由于这种磨损是不规则的,因此造成了叶轮的不平衡。

此外,叶轮表面在高温下很容易氧化,生成厚厚的氧化皮。

这些氧化皮与叶轮表面的结合力并不是均匀的,某些氧化皮受振动或离心力的作用会自动脱落,这也是造成叶轮不平衡的一个原因。

⑵.叶轮的结垢
湿性物质是水洗后的瓦斯,湿度很大,未洗净的粉尘颗粒虽然很小,但粘度很大。

当它们通过引风机时,在气体涡流的作用下会被吸附在叶片非工作面上,特别在非工作面的进口处与出口处形成比较严重的粉尘结垢,并且逐渐增厚。

当部分灰垢在离心力和振动的共同作用下脱落时,叶轮的平衡遭到破坏,整个引风机都会产生振动。

我厂的这台排送机应是结垢为主。

4 解决叶轮不平衡的对策
4.1.解决叶轮磨损的方法
干性物质是引起的叶轮磨损,除减少灰尘量之外,最有效的方法是提高叶轮的抗磨损能力。

目前,这方面比较成熟的方法是热喷涂技术,即用特殊的手段将耐磨、耐高温的金属或陶瓷等材料变成高温、高速的粒子流,喷涂到叶轮的叶片表面,形成一层比叶轮本身材料耐磨、耐高温和抗氧化性能高得多的超强外衣。

这样不仅可减轻磨损造成叶轮动平衡的破坏,还可减轻氧化层产生造成的不平衡问题。

选用排送机时,优先选用经过热喷涂处理的叶轮。

使用中未经过热喷涂处理的叶轮,在设备维修时,可考虑对叶轮进行热喷涂处理。

虽然这样会增加叶轮的制造或维修费用,但却提高叶轮的使用寿命l~2倍,延长了引风机的大修周期。

从而降低了引风机和整个生产系统的运行成本,综合效益很好。

4.2 解决叶轮结垢的方法
(1)喷水除垢:这是一种常用的除垢方法,喷水系统装在排送机的机壳上,由管道、3个喷嘴(1个位于叶轮出口处,2个位于进口处)及排水孔组成。

水源一般为自来水,压力约0.3MPa。

这种方法通常还是有效的。

缺点是每次停机除垢的时间较长,每月需停机数次进行除垢。

影响机组的正常使用。

(2)高压气体除垢:该系统采用与喷水系统相似的结构,但其管道为耐高压管道、专用的喷嘴和高压气源。

这种装置对叶片的除垢是快速有效的,它可以在排送机正常停机的间隙,开启高压气源,仅用数十秒的时间即可完成除垢。

由于操作简单方便,不但解决了人工除垢费力、费时的问题,还明显降低了整个机组的生产成本。

问题是用户是否有现成的高压气源(压力在0.8~1.5MPa之间,可以用压缩空气或氮气),否则,需要专用的高压压缩机设备。

(3)气流连续吹扫除垢:从结构上讲,连续吹扫装置不需要外部气源,它利用排送机本身的排气压力,将少量的烟气(额定风量的1%~2%)从引风机的内部引向专用喷嘴,喷嘴位于叶轮的进口,以很高的速度将烟气喷射到叶片的非工作表面,这种吹扫是连续地,它随着引风机的开启而开始,不但将刚刚粘到叶片上的粉尘吹掉,还可防止粉尘沉积加厚,且无需停机除垢。

该装置结构简单、对排送机改动量很小,防结垢效果很好,是一种很有发展的新技术。

4.3 叶轮动平街的校正
无论是采用热喷涂处理的叶轮,还是采用各种方法除垢的叶轮,其效果都不会一劳永逸。

排送机在长期使用后,仍会出现振动超过允许上限值阶情况。

此时,叶轮的不平衡问题只能通过动平衡校正来解决。

以往叶轮的动平衡校正通常是在动平衡机上进行的,这对使用中的引风机,特别是大型风机是很不方便的。

因此,现场动平衡技术近年来越来越得到人们的重视。

它与以往的方法相比主要的优点为:(1)避免繁琐的拆装工作,节省了拆装和运输费用,缩短了维修时间;(2)保存了原有的安装精度,提高了整个排送机系统的平衡精度。

其测试方法简述如下:
测试设备:现场动平衡仪型号:HG—3538
测试步骤:(1)在风机轴上贴反光条,测得初始振动值:通频振幅Vrmso,工频振幅V o,相角φo;(2)测得加试重后振动值:通频振幅Vrmsl,工频振幅V1,相角φ1,自动求得动平衡解算结果(配重值和加配重的角度);(3)加配重后,测剩余振动值:通频振幅Vrms2,工频振幅V2,相角φ2,只要能满足振动验收标准即可。

测试时间:对熟练的现场测试人员,完成上述工作只需l~2小时。

现场动平衡技术是一种成熟、实用的维修技术,它可以简便、快捷和经济地解决不平衡问题。

通过动平衡仪器的检测后,在叶轮合时的部位添加动平衡块,使其重新回到动平衡状态中。

我厂的此台风机震动剧烈,已经影响到正常的生产,动平衡问题是其主要问题,妥善解决此问题将对提高产量起到现极大作用。

总结
叶轮的动平衡问题一直是大型风机主要面对的问题,在生产制造过程中,要确保其质量,同时在使用过程中也应及时解决掉工业生产中的产生的破坏动平衡因素。

是保证大型风机设备正常运转的关键。

参考文献
[1]吕太.张炳文,王顺.机翼型叶片防止积灰的机理与技术.风机技术,2002 (3).
[2]乔文生.孙晓波.利用现场动平衡技术提高企业设备维修效率.风机技术,2002 (2).
[3]金清肃.高嵘.王秀玲.导热油加热炉的清洗.河北工业科技,2002.。

相关主题