烟气脱硫技术方案第一章工程概述1.1项目概况某钢厂将就该厂烧结机后烟气进行烟气脱硫处理。
现烧结机烟气流程为烧结机一除尘器一吸风机一烟囱。
除尘器采用多管式除尘器,除尘效率大于90%。
主要原始资料如下:1.2主流烟气脱硫方法烟气脱硫(简称FGD是世界上唯一大规模商业化应用的脱硫方法,是控制酸雨和二氧化硫污染最为有效和主要的技术手段。
FGD其基本原理都是以一种碱性物质来吸收SO,就目前国内实际应用工程, 按脱硫剂的种类划分,FGD技术主要可分为以下几种方法:1、以石灰石、生石灰为基础的钙法;2、以镁的化合物为基础的镁法;3、以钠的化合物为基础的钠法或碱法;4、以化肥生产中的废氨液为基础的氨法;最为普遍使用的商业化技术是钙法,所占比例在90%以上。
而其中应用最为广泛的是石灰石-石膏湿法和循环流化床半干法烟气脱硫系统。
针对本工程,我公司将就以上两种脱硫方法分别进行设计、描述,并最终给出两方案比较结果。
1.3 主要设计原则针对本脱硫工程建设规模,同时本着投资少、见效快、系统简单可靠等原则,我方在设计过程中主要遵循以下主要设计原则:1、脱硫剂采用外购成品石灰石粉(半干法为消石灰粉),厂内不设脱硫剂制备车间。
2、考虑到烧结机吸风机出口烟气含硫浓度为2345 mg/Nd3,浓度并不是很高,在满足环保排放指标的前提下,脱硫装置的设计脱硫效率取》90%。
3、脱硫装置设单独控制室,采用PLC程序控制方式。
同时考虑同主体工程的信号连接。
4、脱硫装置的布置尽可能靠近烟囱以减少烟道的长度,减少管道阻力及工程投资。
第二章 石灰石-石膏湿法脱硫方案2.1工艺简介石灰石-石膏湿法脱硫工艺是目前世界上应用最为广泛和可靠的工艺。
该工艺以石灰石浆液作为吸收剂,通过石灰石浆液在吸收塔内对烟气进行洗涤, 发生反应, 以去除烟气中的S02反应产生的亚硫酸钙通过强制氧化生成含两个结晶水的硫酸 钙(石膏)。
图2.1石灰石—石膏湿法脱硫工艺流程图工艺流程图如图2.1所示,该工艺类型是:圆柱形空塔、吸收剂与烟气在塔内 逆向流动、吸收和氧化在同一个塔内进行、塔内设置喷淋层、氧化方式采用强制氧 化。
与其他脱硫工艺相比,石灰石-石膏湿法脱硫工艺的主要特点为: •脱硫效率高,可达95%以上;•吸收剂化学剂量比低,脱硫剂消耗少; •液/气比(L/G )低,使脱硫系统的能耗降低;•可得到纯度很高的脱硫副产品一石膏,为脱硫副产品的综合利用创造了有利 条件; •采用空塔型式使吸收塔内径减小,同时减少了占地面积; •采用价廉易得的石灰石作为吸收剂;•系统具有较高的可靠性,系统可用率可达 97%以上; •对锅炉燃煤煤质变化适应性较好; •对锅炉负荷变化有良好的适应性。
2.2反应原理厂工艺朮吸收塔脉冲悬评氧化空弋<吸收利荼施用于去除SOx的浆液收集在吸收塔浆池内。
吸收塔浆池分为氧化区和结晶区,在上部氧化区内,氧化空气通过一个分配系统吹入,在pH值为4~5的浆液中生成石膏;在结晶区,石膏晶种逐渐增大,并生成为易于脱水的较大的晶体,新的石灰石浆液也被加入这个区域。
化学反应过程描述如下:石灰石的溶解:CaCO3 + CO2 + H2O > Ca(HCO3)2与SO2反应:Ca(HCO3)2 + 2SO2 > Ca(HSO3)2 + 2CO2氧化:Ca(HSO3)2 + CaCO3 + O2 > 2CaSO4+ CO2 + H2O石膏生成:CaSO4 + 2H2O > CaSO4 x 2H2O去除SO2总反应方程式:CaCO3+ SO2 + ? O2 + 2H2O > CaSO4X 2H2O + CO2石灰石在水中的低溶解性在吸收塔内被二氧化碳提高。
通过溶解过程,生成碳酸氢钙。
碳酸氢钙与二氧化硫反应生成可溶的亚硫酸氢钙。
在氧化区,亚硫酸氢钙与空气中的氧发生反应,生成硫酸钙。
浆液中的硫酸钙再结晶生成二水硫酸钙,即石膏。
整个脱硫反应在吸收塔塔内区域的化学反应如图 2.2所示。
2.3本方案系统描述本工程石灰石-石膏湿法烟气脱硫装置主要由以下系统组成:1) 吸收剂制备与供应系统本脱硫方案以石灰石粉作为脱硫吸收剂。
合格的石灰石粉由罐车运送到厂内。
通过气力输送送入石灰石粉仓,经料仓底部的称重式给料机送入石灰石浆液箱进行搅拌、配比。
石灰石粉和水连续加入脱硫剂浆液箱,在脱硫剂浆液箱中石灰石浆液含固浓度为20~30% (wt)。
浆液经泵送入脱硫吸收塔内。
为使浆液混合均匀、防止沉淀,在脱硫剂浆液箱顶部装设有顶进式搅拌器。
2) SO2吸收系统SO2吸收系统是烟气脱硫系统的核心,主要包括吸收塔、循环浆液泵、氧化风机、石膏排放泵及搅拌器等设施、设备。
在吸收塔内,烟气中的SO2被吸收浆液洗图22 吸收塔各区域化学反应原理图涤并与浆液中的CaCO 我生反应,在吸收塔底部的循环浆池内被输送来的空气 强制氧化,最终生成石膏晶体,由石膏浆液排出泵排出吸收塔送入石膏浆处理系统 脱水。
在吸收塔的出口设有除雾器,以除去脱硫后烟气带出的细小液滴,使烟气在 含液滴量低于100mg/Nm3T 排出。
目前,湿法脱硫吸收塔已将脱硫、氧化、除尘三项功能集于一体,使系统大为 简化。
吸收塔为圆柱体、钢结构,防腐内衬。
吸收塔底部为循环浆池,上部分为喷淋 层和除雾器。
喷淋层设在吸收塔的中上部,每个喷淋层都是由一系列喷嘴组成,其作用是将 循环浆液进行细化喷雾。
一个喷淋层包括母管和支管,母管的侧向支管成对排列, 喷嘴就布置在其中。
喷嘴的这种布置安排可使吸收塔断面上实现均匀的喷淋效果。
吸收塔循环泵将塔内的浆液循环打入喷淋层,为防止塔内沉淀物吸入泵体 造成泵的堵塞或损坏及喷嘴的堵塞, 循环泵前装有网格状滤网(塔内)。
单台循环泵 故障时,FGD 系统可正常进行,若全部循环泵均停运,FGD 系统将保护停运,烟气走 旁路。
当脱硫系统解列或出现事故停机需要检修时,吸收塔内的吸收浆液由排浆泵排 出,存入事故浆罐中,以便对脱硫塔进行维修。
3)烟气系统烧结机全部烟气经除尘器、引风机、脱硫系统入口挡板门后进入脱硫吸收塔, 经洗涤脱硫后的烟气温度约50C,经过脱硫系统出口挡板门进入总烟道, 最终经烟 囱排入大气。
挣烟气SO 5 Hfill HFCafHCOs^ + 2HCI 4 CaC^ * 2C0^ * ZH^O C*(hCQj}j + 2HF 』 CfFj + 2CQ 3 + 2MjOCftllCQ)^* 25Q 2 4 C*fHSO 3}2 * aCOj吸收区^tecrpit-ciiniciiKpHdevefldwidAilDiti TonePH4BVBI 4-SCa(HSOj^ *CaCC5 +2口記$ + C02 * HjO筑化区CaSOf + 2Hl 2O —t CaSDi 2H,0结殆区CfllCOg * COj. * P 2QRsiictikan witihHCllRv^tcl mi willii HF|ICh 眼总圧辰应FtetcidanMAih SO ;□xiidaben erf CalciumEijtfite 血祗址何亚雉越椚 祗it 生it 石書 Form 出 inn of &rp4Aim崔蚪础「石Ti ■青禺悔的扩尢,石规五的闸解 UK&OlUtlGin ofPurlfl^rl ^fH.■ naju-」&盘3苣多CaCD 2 -CaOHGOjIj锅炉正常运行时,脱硫系统亦同时运行,只在特殊情况及故障情况时允许脱硫系统走旁路,此时锅炉在无脱硫装置的情况下(烟气通过总烟道)运行。
正常运行时,无论脱硫装置处于何种工况下运行都不能对烧结机产生任何影响。
吸收塔低负荷运行时,按吸收塔特性停运一层喷嘴。
脱硫系统投运时,脱硫系统的进、出口挡板门打开,烟道旁路挡板门关闭。
在烧结机启动过程中或脱硫系统解列、需要检修时,脱硫系统进、出口挡板门关闭,烟道旁路挡板门打开,机组烟气经引风机和总烟道直接进入烟囱排出。
4)脱硫石膏处理系统从脱硫吸收塔排出的石膏浆固体物浓度含量约为15%-20%,本工程脱硫石膏按以综合利用为主考虑,在不能利用时采取抛弃方式。
为了便于石膏的运输和贮存,需要进行脱水处理。
石膏浆经水力旋流器浓缩至固体物含量约40-50%后进入石膏脱水装置,经脱水处理后的石膏固体物表面含水率小于10%,脱水石膏送入石膏库房中存放待运。
石膏旋流器分离出来的溢流液及浓石膏沥水进入石膏滤液回收水箱(池)。
经由石膏滤液回收水泵打回吸收塔及脱硫剂浆液箱进行循环利用。
其中一部分过滤水将作为废水排至钢厂废水处理车间集中处理。
5)工艺水及其他辅助系统钢厂来的脱硫用水即工艺水主要用于吸收塔补水、吸收剂加湿搅拌用水、吸收塔除雾器冲洗用水以及管道冲洗、机泵润滑冷却用水。
FGD装置的浆液管道和浆液泵等,在停运时需要进行冲洗,其冲洗水就近收集在排水池内,本工程设置一个排水池。
事故浆液箱设计为当吸收塔需检修排空时可贮存单个吸收塔内浆池浆液,并可作为吸收塔重新启动时的石膏晶种。
本工程设置1 套事故浆液系统作浆液返回吸收塔用。
2.4 石灰石-石膏湿法烟气脱硫装置主要设备清单主要设备清单第三章循环流化床半干法脱硫方案3.1反应原理来自烧结机出来的烟气,通过烟道进入吸收塔。
此处高温烟气与加入的吸收剂,、循环灰分充分混合,进行初步的脱硫反应,然后通过吸收塔底部的文丘里管加速,吸收剂、循环脱硫灰受到气流的冲击作用而悬浮起来,形成循环流化床,进行充分的脱硫反应。
循环流化床具有最佳的热和物质传送特性,在这区域内流体处于激烈的的湍流状态,循环流化床内的Ca/S值可达到40-50,这是因为细小颗粒和烟气之间最大速差而决定的。
颗粒反应界面不断摩擦,碰撞更新,极大地强化了脱硫反应的传质与传热。
在吸收塔的文丘里的出口扩管段设一套高压喷水装置,喷入的水经过雾化后一方面增湿颗粒表面,另一方面使烟温降至高于露点温度15-20 C,创造良好的脱硫反应温度,吸收剂与SO2充分的反应,主要生成亚硫酸钙CaSO3 1/2H2O,、硫酸钙CaSO4 1/2H2O,和碳酸钙CaCO3他们和飞灰一起由清洁烟气携带到吸收塔顶部,然后在后面的布袋除尘器中分离出来。
分离出来产物由斜槽循环回吸收塔,以延长吸收剂颗粒的停留时间,降低工艺过程中Ca/S摩尔比。
同时这套系统在Ca/S摩尔比稍有增加的情况下,就可以使脱硫率达到90沖上。
对于少量脱硫副产品,由需方负责将其转运到除灰系统。
渚洁烟吒图 3.1 循环流化床半干法脱硫工艺流程图3.2 化学过程CFB-FG啲化学反应原理是烟气中的S02和几乎全部的S03、HCL HF等,在Ca(0H)2粒子的液相表面发生化学反应,主要化学反应方程式如下:Ca(0H)2 + S02 = CaS03 * • 1/2 H20 + 1/2 H20Ca(0H)2 + S03= CaS04 * • 1/2 H20 + 1/2 H20CaS03 *• 1/2 H20 + 1/202 = CaS04 * • 1/2 H20Ca(0H)2 + 2 HCl = CaCl2 * • 2 H20Ca(0H)2 + C02 = CaC03 + H20Ca(0H)2 + 2 HF = CaF2 + 2 H20与其他脱硫工艺相比,循环流化床半干法脱硫工艺的主要特点为:•脱硫效率较高,可达90 %以上;•工艺流程相对比较简单,系统占地面积小,可以做到脱硫、除尘一体化;•无脱硫副产物,无废水;•吸收塔、烟道等设备无腐蚀问题,不需防腐;•系统具有较高的可靠性,系统可用率可达95%以上;3.3 脱硫岛主要工艺系统1 )烟气系统从烧结机出来的烟气经除尘器、吸风机,从吸收塔底部进入吸收塔,在吸收塔内经喷水减温后,进入吸收塔后的布袋除尘器,最后经引风机排入主烟道。