当前位置:
文档之家› 最详细:CRISPR-Cas9系统原理应用及发展
最详细:CRISPR-Cas9系统原理应用及发展
CRISPR-Cas9系统基因修饰理论 与实战
1 基因表达研究方 法
干扰基因表达(过表达或低表达),或者表达突变体并检 测其相关生理功能,是基因功能研究中最重要的方式之一; 基因表达技术- 质粒转染,病毒转染等传统方法得到广泛 运用,但同时其也存在缺点;
1 基因修饰的方法 与各自优势
质粒- 瞬时转染 - 某些细胞效率偏低 - 表达结果不稳定,有 内源表达的干扰; 质粒- 稳定细胞 - 表达结果不稳定,筛选效率不高,在重组 插入基因组中可能干扰其它基因表达;
through Replacing TALENs with CRISPRs》一文中,作者 利用TALENs和CRISPRs对同一基因进行修饰,效率分别为 0%-34%和51%-79%。
4 CRISPR-Cas系统前景分析
而且从实际应用的角度来说,CRISPRs比TALENs更 容易操作,因为每一对TALENs都需要重新合成,而用于 CRISPR的gRNA只需要替换20个核苷酸就行。
重复序列之间被 26~72 bp 间隔序列(spacer)隔开。CRISPR
就是通过这些间隔序列(space)与靶基因进行识别。
1.1 CRISPR结构
1.2 Cas家族
Cas(CRISPR associated): 存在于CRISPR位点附近,是一种双链DNA核酸酶,能在 guide RNA引导下对靶位点进行切割。它与folk酶功能类似, 但是它并不需要形成二聚体才能发挥作用。
最主要的要求:
PAM(protospacer-adjacent motif)为NGG。
2 CRISPR-Cas系统靶向要求
在人类基因组中,平均每8bp就出现一个NGG PAM。
2 CRISPR-Cas系统靶向要求
3 CRISPR-Cas系统介导基因修饰
3.1 dual-RNA:Cas介导编辑模板替换
3.2 sg-RNA:Cas介导基因修饰
3.2 sg-RNA:Cas介导基因修饰
3.2 sg-RNA:Cas介导基因修饰
Cas9
sg-RNA
3.3 cr-RNA:Cas介导双基因修饰
2013年2月15日在《science》上发表的《Multiplex Genome Engineering Using CRISPR/Cas Systems》一文 中,作者利用一个包含两个靶向不同基因的spacers的 crRNA实现了同时对两个基因进行编辑。
4 CRISPR-Cas
技术优势
只需合成一个sgRNA就能实现对基因的特异性修饰,Cas
蛋白不具特异性。
编码sgRNA的序列不超过100bp,因此比构建TALENs和ቤተ መጻሕፍቲ ባይዱZFNs更简单方便。
较短的sgRNA序列也避免了超长、高度重复的TALENs编
码载体带来的并发症。
5 我们的工作 利用CRISPR-Cas9载体肿瘤基因M在卵 巢癌细胞HeLa的编辑与敲除
6
Models generated by CRISPR/Cas9 system Dumpier nematodes Zebrafish embryos Fruit flies
Monkey
Rice
Pennisi E. 2013. Science, (6148):833-6.
7
1 CRISPR-Cas概述
2013年1月29日在《nature biotechnology》上发表的 《RNA-guided editing of bacterial genomes using CRISPR-Cas systems》一文中,作者利用CRISPR-Cas系 统用设计好的DNA模板替换的相应基因来达到基因的定向 修饰。
1987年,日本大阪大学(Osaka University)在对一种细菌 编码的碱性磷酸酶(alkaline phosphatase)基因进行研究时, 发现在这个基因编码区域的附近存在一小段不同寻常的DNA 片段,这些片段是由简单的重复序列组成的,而且在片段的
两端还存在一段不太长的特有的序列。
2013以后,研究者们在包括《science》和《nature
DNA
+donor DNA DNA sequence disrupted DNA sequence replaced
NHEJ: Non-homologous end joining
HDR: homology directed repair
非同源性末端接合修复机制(Nonhomologous end joining, NHEJ)
CRISPR-Cas主要由两部分组成:
切割
识别
1.1 CRISPR结构
CRISPR: (clustered regularly interspaced short palindromic repeats)
CRISPR 是一个特殊的DNA重复序列家族, 广泛分布于
细菌和古细菌基因组中。CRISPR 位点通常由短的高度保守 的重复序列(repeats) 组成, 重复序列的长度通常 21~48 bp,
5 我们的结果 验证肿瘤增殖、迁移等功能受到影响;
3.3 cr-RNA:Cas介导双基因修饰
4 CRISPR-Cas系统前景分析
这是一项靶向基因修饰的革新技术,一项极具有 可能获得诺贝尔奖技术。
4 CRISPR-Cas系统前景分析
2013年4月12日在《cell stem cell》上发表的《Enhanced
Efficiency of Human Pluripotent Stem Cell Genome Editing
(缺失2个碱基,移码) (缺失6个碱基,不移码) (缺失6个碱基,不移码) (缺失2个碱基,移码) (缺失2个碱基,移码) (缺失2个碱基,移码) (缺失2个碱基,移码) (缺失2个碱基,移码) (插入1碱基,移码) (缺失2个碱基,移码) (缺失2个碱基,移码) (缺失6个碱基,不移码) (插入1碱基,移码) (插入1碱基,移码)
2 CRISPR-Cas系统的发现
CRISPR-Cas是很多细菌和大部分古生菌的天然免疫系统,
通过对入侵的病毒和核酸进行特异性的识别,利用Cas蛋白进
行切割,从而达到对自身的免疫。
2 CRISPR-Cas系统的发现
2 CRISPR-Cas系统的发现
2 CRISPR-Cas系统的发现
CRISPR-Cas系统赋予原核细胞针对外源DNA特异性免
病毒- 瞬时感染 - 表达结果不稳定,质粒容易在细胞复制过
程中丢失,随机插入基因组中可能会干扰其它基因表达; 新一代的基因编辑技术- 利用重组酶在基因组水平修饰基
因,产生的遗传性质稳定,直接作用于内源,减少表达干扰,
目前有成熟的技术如CRISPR/Cas9;
DNA修复的机制与 基因编辑原理
NHEJ and HDR
同源介导的修复机制(Homologydirected repair, HDR)
ZFN与TALEN基因 编辑原理
ZFN and TALEN
5
Genome Editing in Mammalian Cells
I: Genome modification
II: Genomic deletion
Le C, F Ann R, David C, et al. 2013, Science, (6121):819-823.
疫, 而这种特异性是由间隔序列(spacer)决定的。在宿主 防御噬菌体攻击中,针对自然界中庞大的噬菌体种群,细
菌进化了CRISPR 介导的适应性免疫。这种免疫功能的发
挥是由CRISPR 间隔序列的动态性变化,即通过增加或删 除间隔序列(spacer)来实现的。
2 CRISPR-Cas系统靶向要求
biotechnology》等著名杂志上发表多篇文章介绍CRISPR-Cas
系统,并且已成功在人类、小鼠、斑马鱼等物种上实现精确 的基因修饰。
1 CRISPR-Cas概述
CRISPR-Cas:一种来源是细菌获得性免疫的由RNA指导Cas 蛋白对靶向基因进行修饰的技术。
1 CRISPR-Cas概述
5 我们的结果 成功获得了M基因敲除的HeLa细胞系,
模板 CCCGGCAGGCTGGACAC-TTCGTGGAGGGCTCCAAAG 11-5-1 CCCGGCAGGCTGGACAC--TCGTGGAGGGCTCCAAAG 11-5-2 CCCGGCAGGCTGGACAC------GGAGGGCTCCAAAG 11-5-3 CCCGGCAGGCTGGACAC------GGAGGGCTCCAAAG 11-5-5 CCCGGCAGGCTGGACAC--TCGTGGAGGGCTCCAAAG 11-5-4 CCCGGCAGGCTGGACAC--TCGTGGAGGGCTCCAAAG 11-5-6 CCCGGCAGGCTGGACAC--TCGTGGAGGGCTCCAAAG 11-18-1 CCCGGCAGGCTGGACAC--TCGTGGAGGGCTCCAAAG 11-18-2 CCCGGCAGGCTGGACAC--TCGTGGAGGGCTCCAAAG 11-18-4 CCCGGCAGGCTGGACACTTTCGTGGAGGGCTCCAAAG 11-18-6 CCCGGCAGGCTGGACAC--TCGTGGAGGGCTCCAAAG 11-18-8 CCCGGCAGGCTGGACAC--TCGTGGAGGGCTCCAAAG 11-18-9 CCCGGCAGGCTGGACAC------GGAGGGCTCCAAAG 11-18-5 CCCGGCAGGCTGGACACTTTCGTGGAGGGCTCCAAAG 11-18-7 CCCGGCAGGCTGGACACTTTCGTGGAGGGCTCCAAAG
流程-
a.sgRNA的引物设计(4条); b.px459-cas9载体构建 ,HeLa细胞上的转染与基因靶 点筛选(1次); c.母克隆的基因剪切的确定(2-3个母克隆); d.单克隆筛选(2-3轮,100个子克隆) f. 单克隆的鉴定(Q-PCR以及WB检测);