当前位置:文档之家› 管理数量方法与分析内容串讲ppt

管理数量方法与分析内容串讲ppt

不相关
正线性相关
测度两变量相关程度的指标:协方差与相 关系数 协方差是两变量的所有取值与其算术平 均数.离差乘积的算术平均数.用来测定两变量 之间相关关系的方向与密切程度. 计算协方差的公式有算术平均法与加权算术 平均法.P37 1.26.1.27 相关系数 是两变量的协方差与它们 标准差之积的比 . 用来测定两变量之间相关 关系的方向与密切程度的常用指标 .
i 1
方差 D X Var( X ) E ( X EX )2 而称 DX 为均方差,根方差或标准差记为σ (X)
EX xf ( x )dx


离散型 DX E ( X EX ) ( x i EX ) 2 pi
2

ቤተ መጻሕፍቲ ባይዱ

连续型
DX

2 ( x EX ) f ( x )dx
pij pi p j
则称 X ,Y 相互独立的随机变量. 连续型随机变量的独立性 如果对于几乎所有的x,y,有
众数—位置平均数 变量的全部取值中出现次数最多的变量 值,称为此变量的众数,用Mo表示. 众数的计算方法 观察法,插值法. 算术平均数、中位数、众数三者关系 算术平均数、中位数、众数三者之间的数量 关系,取决于变量值在数列中的分布状况。 变量值的分布状况分为对称、左偏、右偏
三、离散程度的测度
离散程度测度是变量次数分布的另一个 重要特征,反映各变量值远离其分布中心的 程度(离散程度)。 测度变量值的离散程度的指标主要有 极差、四份位差、平均差、方差、标准差 、变异系数。
样本相关系数的计算公式 P38, 1.28,1.29
相关系数的取值及其意义
1. 2. r 的取值范围是 [-1,1] |r|=1,为完全相关


r =1,为完全正相关 r =-1,为完全负正相关
3. 4. 5. 6.
r = 0,不存在线性相关关系 -1r<0,为负相关 0<r1,为正相关 |r|越趋于1表示关系越密切;|r|越趋于 0表示关系越不密切
五、两个变量的相互关系:函数关系,相关 关系与不相关关系 散点图












非线性相关
完全正线性相关
完全负线性相关



负线性相关

管理数量方法与分析
课程串讲
第一章
数理分析的基础
一、 统计数据 统计数据的分类 (按计量尺度分)分类数据、 顺序数据、数值型数。(按时间状况分)截面数 据、时间序列数据(第三章讨论)、混合数据。 数据整理常用的方法是分组。
分组方法
单项式分组
组距分组 等距分组 异距分组
变量数列的常用分布图 变量分布可以用频数频率分布表表示,也 可以用频数频率分布图表示。
当偏态系数SKp =0为对称分布;偏态系数 SKp > 0为右偏分布;偏态系数SKp < 0为左偏分布。 直观偏态系数-主要有皮尔逊偏度系数与鲍莱 偏度系数.P33 1.18; P34 1.19
峰度描述数据分布的扁平程度,是以标准 状态分布为标准,描述数据分布曲线的顶端 相对于正态分布顶端而言是平坦还是尖削的 程度;峰态用峰度系数的大小来衡量,用Ku表 示. 峰度系数的计算公式 P35 1.25
常用的分布图有
柱形图、直方图、折线图
二、 分布中心的测度
描述分布中心的方式 一种是从位置角度 , 另 一种是数值角度.位置平均数主要有中位数、 众数. 数值平均数主要有算术平均数、几何平均数 、调和平均数.
平均数有算术平均数、几何平均数与调 和平均数,根据计算方法 分为简单平均数 与加权平均数。 中位数—位置平均数 将变量值按照从小到大或从大到小的排序 排列,处于中间位置上的那个变量值,用Me表示. (1) 未分组数据的中位数 (2)分组数据 f / 2 Sm 1 Me L d 下限公式 fm f / 2 S m 1 上限公式 Me U d fm
设A、B、C是三个随机事件, 如果
二、 随机变量及其概率分布
根据随机变量取值情况,可将随机变量 分为离散型随机变量与连续型随机变量。 离散型随机变量
X P
x1
x2 , xk
p 2 , pk
p1
一些常用的离散型随机变量
k 1 k 两点分布 PX k p (1 p)


f (u, v )dudv
设 G 是平面上的一个区域,点 ( X,Y )落在
G 内 的概率为:P{( X , Y ) G }
f ( x, y)dxdy.
G
随机变量X与Y的边缘密度函数为fX(x), fY(y)。
f X x

f x, y dy
fY y
第二章
概率及其概率分布
一、随机事件与概率
概念 随机现象、随机试验、样本空间、样 本点、随机事件,基本事件、必然事件、不 可能事件。 事件间的关系与运算 包含关系、相等关系,和事件、积事件、 差事件、互斥事件与对立事件.
频率 的定义与性质----稳定性 nA 既有 f n ( A) n 事件的概率的定义与性质 性质1 性质2 性质3 0≤P(A)≤1
P(B )P( A | B ) k k P ( B | A) , k 1,2,, n k n P(B j )P( A | B j ) j 1
此公式称为逆概率公式
事件独立性
P AB P A P B
设A、B是两个随机事件,如果
则称A与B是相互独立的随机事件
P AB P AP B P BC P B P C P AC P AP C 则称A、B、C是相互独立的随机事件.
P ( ) 0 ; P(Ω)=1
若事件A与B是两个互斥事件,则 P(A∪B)=P(A)+P(B) 若事件A与B是对立事件,则 P(B)=1-P(A) 若事件A与B是任意两事件,则 P(A∪B)=P(A)+P(B)-P(AB)
性质4 性质5
等可能概型(古典概型) 具有下列特点的 试验:本空间的元素只有有限个;每个基本事 件发生的可能性相同.称为古典概型试验,又 称等可能概型试验,所对应的数学模型称为古 典概型. 古典概型概率的计算公式
4. 对于一切使f ( x )连续的点x,均有 F ( x ) f ( x ).
b
5.连续型随机变量在一点处的概率等于0,即
P{X=a}=0.于是有 P{a x b} P{a x b} P {a x b}
P {a x b}
一些常用的连续型随机变量 均 匀 分 布 X ~ U [a , b]


f x, y dx
二维离散型随机变量的独立性
随机变量X与Y的边缘分布函数分别为FX(x)和FY(y), 如果对于任意的x,y,均有
F x, y FX x FY y
则称 X ,Y 相互独立的随机变量。
离散型随机变量的独立性 如果对于任意的i, j,均有
k A包含的基本事件数 P ( A) . n S中基本事件总数
条件概率 设A、B是随机试验E的两个事件,且
P AB P(A)>0 则称 P B A P A
为在事件A发生的条件下事件B发生的条件概 率,简称为B在A之下的条件概率. 乘法公式
P AB P AP B A

y2 p12
p22

„ „ „ „ „
yj p1 j
p2 j

x2

„ „ „ „ „
pi
p1
p2

xi

pi1

pi 2

pij

pi

p j
p1
p2
p j
二维连续型随机变量 对于二维随机变量(X,Y)分布函数 F(x ,y )---f(x,y)
y x
F ( x, y )
c.若X,Y相互独立, 则 D(aX+bY)=a2DX+b2DY.
d.DX=0↔P{X=c}=1,c=EX.
常见分布的期望与方差
离散型 分布 X~B(1,p) X~B(n,p) X~π (λ ) X~U(a,b) 期望 p np 方差 p(1-p) np(1-p)
连续型
λ λ (a+b)/ (b2 a)2/12 1/λ σ2
极差 既有 R = max - min 四分位极差 也称内距, 称第一分位数与第三分位 数差的绝对值为四分位极差,记为IQR=| Q 1- Q 3 | 。 平均差 各变量值与其算术平均值离差绝对 值的算术平均数,记为AD 或Md. 方差 各变量值与其算术平均值离差 平方的算术平均数,记为σ 2. 标准差 各变量值与其算术平均值离差平 方的算术平均数的算术平方根,记为σ .
P AB P B P A B
全概率公式 设 B1,B2,…,Bn 为试验 E 的样本空 间Ω的一个完备事件组,且P(Bi)>0.则对于任意 事件A,均有
P A P Bk P A Bk .
n k 1
贝叶斯公式 设 B1,B2,…,Bn 为试验 E 的样本空 间Ω的一个完备事件组,且P(Bi)>0.则对于任意 事件A,均有
(k 0,1)
二项分布 X~B(n,p)
PX k C p 1 p
k n k
n k
k 0, 1, , n

k
泊松分布 X~P(λ) 超几何分布
k n k CD CN D PX k n CN
PX k
相关主题