氦氖激光器系列实验第一章 简 介氦氖激光器系列实验,主要用于氦氖激光器相关的参数测量。
通过有关实验,可以掌握氦氖激光器的调整方法,了解激光器的基本原理、基本结构以及输出激光的特性等。
主要用于高校物理教学演示。
1.1实验项目1、氦氖激光器半内腔谐振腔调节实验。
2、氦氖激光器功率稳定性的测量实验。
3、氦氖激光器光斑发散角的测量实验。
4、用共焦球面扫描干涉仪观察、分析、判断激光器的模式组成。
1.2 技术参数半内腔氦氖激光器谐振腔曲率半径 1m ∞中心波长 632.8nm全内腔氦氖激光器腔长 250mm功率 ≥1.5mW中心波长 632.8nm共焦球面扫描干涉仪反射中心波长 632.8nm自由光谱范围 2.5GHz精细常数 >100第二章 激光原理2.1普通光源的发光—受激吸收和自发辐射普通常见光源的发光(如电灯、火焰、太阳等地发光)是由于物质在受到外来能量(如光能、电能、热能等)作用时,原子中的电子就会吸收外来能量而从低能级跃迁到高能级,即原子被激发。
激发的过程是一个“受激吸收”过程。
处在高能级(E 2)的电子寿命很短(一般为10-8~10-9秒),在没有外界作用下会自发地向低能级(E 1)跃迁,跃迁时将产生光(电磁波)辐射。
辐射光子能量为12E E h −=ν这种辐射称为自发辐射。
原子的自发辐射过程完全是一种随机过程,各发光原子的发光过程各自独立,互不关联,即所辐射的光在发射方向上是无规则的射向四面八方,另外其位相、偏振状态也各不相同。
由于激发能级有一个宽度,所以发射光的频率也不是单一的,而有一个范围。
在通常热平衡条件下,处于高能级E 2上的原子数密度N 2,远比处于低能级的原子数密度低,这是因为处于能级E 的原子数密度N 的大小随能级E 的增加而指数减小,即N ∝exp(-E /kT ),这是著名的波耳兹曼分布规律。
于是在上、下两个能级上的原子数密度比为]/)(exp[/1212kT E E N N −−∝式中k 为波耳兹曼常量,T 为绝对温度。
因为E 2>E 1,所以N 2<<N 1。
例如,已知氢原子基态能量为E 1=-13.6eV ,第一激发态能量为E 2=-3.4eV ,在20℃时,kT ≈0.025eV ,则0)400exp(/12≈−∝N N可见,在20℃时,全部氢原子几乎都处于基态,要使原子发光,必须外界提供能量使原子到达激发态,所以普通广义的发光是包含了受激吸收和自发辐射两个过程。
一般说来,这种光源所辐射光的能量是不强的,加上向四面八方发射,更使能量分散了。
2.2 受激辐射和光的放大由量子理论知识知道,一个能级对应电子的一个能量状态。
电子能量由主量子数n (n =1,2,…)决定。
但是实际描写原子中电子运动状态,除能量外,还有轨道角动量L 和自旋角动量s ,它们都是量子化的,由相应的量子数来描述。
对轨道角动量,波尔曾给出了量子化公式Ln =nh ,但这不严格,因这个式子还是在把电子运动看作轨道运动基础上得到的。
严格的能量量子化以及角动量量子化都应该有量子力学理论来推导。
量子理论告诉我们,电子。
如果选择规则不满足,则跃迁的几率很小,甚至接近零。
在原子中可能存在这样一些能级,一旦电子从高能态向低能态跃迁时只能发生在l (角动量量子数)量子数相差±1的两个状态之间,这就是一种选择规则被激发到这种能级上时,由于不满足跃迁的选择规则,可使它在这种能级上的寿命很长,不易发生自发跃迁到低能级上。
这种能级称为亚稳态能级。
但是,在外界光的诱发和刺激下可以使其迅速跃迁到低能级,并放出光子。
这种过程是被“激”出来的,故称受激辐射。
受激辐射的概念是爱因斯坦于1917年在推导普朗克的黑体辐射公式时,第一个提出来的。
他从理论上预言了原子发生受激辐射的可能性,这是激光的基础。
受激辐射的过程大致如下:原子开始处于高能级E 2,当一个外来光子所带的能量h υ正好为某一对能级之差E 2-E 1,则这原子可以在此外来光子的诱发下从高能级E 2向低能级E 1跃迁。
这种受激辐射的光子有显著的特点,就是原子可发出与诱发光子全同的光子,不仅频率(能量)相同,而且发射方向、偏振方向以及光波的相位都完全一样。
于是,入射一个光子,就会出射两个完全相同的光子。
这意味着原来光信号被放大,这种在受激过程中产生并被放大的光,就是激光。
2.3 粒子数反转一个诱发光子不仅能引起受激辐射,而且它也能引起受激吸收,所以只有当处在高能级的原子数目比处在低能级的还多时,受激辐射跃迁才能超过受激吸收,而占优势。
由此可见,为使光源发射激光,而不是发出普通光的关键是发光原子处在高能级的数目比低能级上的多,这种情况,称为粒子数反转。
但在热平衡条件下,原子几乎都处于最低能级(基态)。
因此,如何从技术上实现粒子数反转则是产生激光的必要条件。
第三章激光器的结构3.1 激光工作介质激光的产生必须选择合适的工作介质,可以是气体、液体、固体或半导体。
在这种介质中可以实现粒子数反转,以制造获得激光的必要条件。
显然亚稳态能级的存在,对实现粒子数反转是非常有利的。
现有工作介质近千种,可产生的激光波长包括从真空紫外到远红外,非常广泛。
3.2 激励源为了使工作介质中出现粒子数反转,必须用一定的方法去激励原子体系,使处于上能级的粒子数增加。
一般可以用气体放电的办法来利用具有动能的电子去激发介质原子,称为电激励;也可用脉冲光源来照射工作介质,称为光激励;还有热激励、化学激励等。
各种激励方式被形象化地称为泵浦或抽运。
为了不断得到激光输出,必须不断地“泵浦”以维持处于上能级的粒子数比下能级多。
3.3 谐振腔有了合适的工作物质和激励源后,可实现粒子数反转,但这样产生的受激辐射强度很弱,无法实际应用。
于是人们就想到了用光学谐振腔进行放大。
所谓光学谐振腔,实际是在激光器两端,面对面装上两块反射率很高的镜。
一块几乎全反射,一块光大部分反射、少量透射出去,以使激光可透过这块镜子而射出。
被反射回到工作介质的光,继续诱发新的受激辐射,光被放大。
因此,光在谐振腔中来回振荡,造成连锁反应,雪崩似的获得放大,产生强烈的激光,从部分反射镜子一端输出。
第四章实验讲义实验一氦氖激光器谐振腔调节实验一、实验目的:1、掌握氦氖激光器出光原理2、掌握氦氖激光器谐振腔的调节方法二、实验仪器:氦氖激光器,调节板,谐振腔反射镜,半内腔氦氖激光器,台灯(或其它光源,请用户自备)三、实验原理:图2在激光器内充有一定比例的氦气和氖气。
封上以后,谐振腔A被严格的固定在激光管管子上,谐振腔B在管子外部,可以延光轴前后移动。
当在激光器正、负极加直流高压时(一般3KV以上),氖离子发生粒子数反转。
当氖离子从高能级降到低能级时,将放出一束光。
这两个谐振腔的反射镜一个反射率接近100%,即完全反射。
另一个反射率约为98%。
这束光被两个谐振腔进行多次反射后,经镀有反射率约为98%膜的一端射出,即为激光。
四、操作步骤(一)十字光靶法(自准直法)1、将半内腔氦氖激光器、谐振腔反射镜和调节板放到导轨上,如图3所示。
2、将半内腔氦氖激光器与激光器电源接好(注意:红色与红色相接,黑色与黑色相接,切勿接反),打开电源,激光管发出橙红色的光。
3、将调节板有十字叉丝面对准激光器,并用光源(如用台灯)照亮十字线,在十字叉丝中间有一小孔,眼睛通过小孔,看到激光管的毛细管另一端,调节激光器调整架六个旋钮,被谐振腔A反射到眼睛中的一个“小白点”(即眼睛、小孔、毛细管在一条直线上),如图4所示。
图44、观察被谐振腔B反射回的调节板的十字叉丝像的位置,此时的十字叉丝像可能在图5的某一位置,调节谐振腔B架后的两个螺丝,使十字叉丝完全落在小孔的正中间,见图6。
这说明谐振腔反射镜与激光管管内的毛细管完全垂直,此时,应马上有激光射出。
若谐振腔与毛细管光轴调节的范围大于λ/4就不出激光,还需继续调节谐振腔的两个螺丝,直到谐振腔与毛细管光轴调节范围小于λ/4,激光才能出来。
注意:在调节叉丝位置的时候,不能用眼睛一直观察,以免激光突然出射打伤眼睛。
一定要先观察叉丝的位置,然后把眼睛离开小孔,在根据偏移方向进行调节。
重复以上步骤,直至出光为止。
图5 图6(二)激光准直法1、将各元件按照图7顺序摆放到导轨上。
2、取下半内腔氦氖激光器与谐振腔反射镜。
将氦氖激光器点亮,利用调节板的小孔调整氦氖激光器出光方向,直至激光器出光方向与导轨平行。
3、将半内腔氦氖激光器按照图7所示放到导轨上(此时不放谐振腔反射镜),仔细调节调整架的6个手钮,直至激光光束穿过半内腔氦氖激光器毛细管,并且后反射镜反射回的激光光点打到小孔中心位置。
4、打开半内腔氦氖激光器电源,放入谐振腔反射镜,将谐振腔反射镜反射激光光点打到调节板小孔中心位置,这时应该有激光发出。
如果没有激光出射,可以微调谐振腔反射镜上两个手钮,直至出光为止。
实验二 氦氖激光器功率稳定性的测量实验一、实验目的:熟悉掌握激光器输出功率的变化规律二、实验仪器:氦氖激光器,激光功率指示仪三、实验原理:激光功率稳定性是指功率随时间的漂移,功率漂移大小。
一般He-Ne 激光器在接通电源以后激光马上出光,但由于天气的冷暖屋里温度变化很大,管子有一定的膨胀系数,总是达不到最佳功率,必须稳定20-30分钟激光器功率才能达到“最佳值”。
这“最佳值”也是相对的。
激光管点燃20~30分钟以后,将激光光束打到激光功率指示仪探头中心位置,连续记录激光器的功率以及时间。
并绘制时间t 和功率p 之间的关系曲线。
根据公式(以取10次为例)101010i i P P =Σ= 其中:P 0为10次测量的平均值。
激光器功率漂移%1000×Δ=P P η 其中2)(min max P P P −=Δ (max P ,min P 分别为功率的最大值和最小值)。
四、实验步骤1、将激光器及其调整架放到导轨上并固定好。
2、打开激光器电源并预热20~30分钟,将激光器光束对准激光功率指示仪探头中心位置,每隔10分钟记录一次,记录10次。
3、根据公式计算激光器的功率漂移η。
实验三 氦氖激光器发散角的测量一、实验目的:1、掌握测量激光束光斑大小和发散角的方法。
2、深入理解基模氦氖激光光束横向光场的高斯分布特性以及激光束发散角的意义。
二、实验仪器:氦氖激光器,刀口部件,激光功率指示仪三、实验原理:在许多应用激光的场合都希望激光光斑的光强分布是均匀的,但是实际的光强分布是不均匀的。
在各种不同光强分布形式中,基横模的光强分布不均匀性最小,因此需要激光器工作在基横模状态。
激光是现代光学的重要组成部分,让学生掌握研究激光基横模的实验原理和方法是非常必要的。
过去研究激光的基横模是用扫描法,本文介绍一种称为刀口法的实验研究方法。
这种方法能够验证激光基横模的光强分布是高斯分布,能够方便地测定光斑的大小。