当前位置:文档之家› 沸石吸附氨氮技术研究进展

沸石吸附氨氮技术研究进展

沸石吸附氨氮技术研究进展摘要:介绍了沸石脱除氨氮的原理和再生机制,综述了国内外应用沸石在改良常规污水处理工艺、作为氨氮污水处理系统的介质与最终出水的氨氮控制环节等方面的研究进展。

炼油催化剂生产过程中产生的污水氨氮浓度高,先后试验了多种处理方法,但水中的氨氮很难达标。

研究经济合理的工艺去除催化剂生产污水中的氨氮是紧迫而实际的。

沸石吸附可作为组合工艺予以试验。

关键词:沸石污水处理氨氯氨氮对人体和水体具有一定的危害,水质指标中氨氮是引起水体富营养化和环境污染的一种重要污染物。

去除污水中氨氮的方法有生物硝化法、气体吹脱法和离子交换法”等.生物法无污染,耗能低,但其转换作用缓慢,去除难于彻底;气体吹脱法工艺简单,投资少,但易造成二次污染;而离子交换法却没有以上不足,且反应过程稳定、易控,吸附剂可再生利用,处理成本较低,特别是使用沸石作为吸附剂时.沸石具有稳定的硅氧四面体结构、大小均一的宽阔空间和连通孔道,能够吸附大量的氨氮,因此被认为是最有应用前景的去除氨氮吸附剂.。

鉴于沸石有着良好的吸附与离子交换性能,而我国是世界上少数几个富产沸石的国家之一,美、日等发达国家已将沸石应用在污水处理、特效干燥剂、土壤饲料改良剂等方面,而我们大部分停留在出卖原矿为主甚至干脆闲置不用。

因此加强对沸石的开发和利用研究非常必要。

沸石脱氨氮技术是近年来引起人们重视的一种生物物化相结合实现污水脱氨氮的新技术,这一技术就是把沸石对铵根离子的选择性吸附能力和生物硝化反硝化结合起来,加强生物脱氨氮系统的性能和效率一、沸石对污水中氨氮的去除机理沸石是具有四面体骨架结构的多孔性含水硅铝酸盐晶体,有良好的吸附及离子交换性能;同时沸石比表面积大,对微生物无毒害,易于附着微生物作为生物载体。

生物沸石脱氨氮工艺中,一方面沸石用于生物载体富集硝化菌;另一方面沸石通过离子交换作用吸附水中的铵,还有很重要的一方面就是沸石表面生物膜中的硝化菌将吸附在沸石上的氨氮转化为硝酸盐,形成了一个自我吸收、自我消化的循环过程。

通过生物方式不但能使沸石不断得到再生,还能提高脱氨氮的硝化性能,利用微生物作用有效地去除氨氮。

此时,沸石得以全部或者部分自我再生,可以继续循环使用。

生物沸石脱氨氮过程实质是化学吸附、离子交换和生物硝化三个过程。

沸石孔径一般在0.4 nm左右,大于这个孔径的分子和离子将不能进入,而NH4+的离子半径为0.286 nm,很容易进入沸石晶穴内部进行离子交换,沸石对氨氮具有很强的选择性吸附能力,其交换能力远大于活性炭和离子交换树脂。

利用沸石的离子交换吸附能力去除污水中的氨氮包括:吸附阶段和沸石再生阶段,沸石再生可分为化学再生法和生物再生法。

化学再生法:用碱或盐溶液(NaOH、NaCl)处理吸附饱和的沸石,以溶液中的Na+或Ca2+交换沸石上的NH4+,使沸石恢复对氨的交换容量。

生物再生法:应用沸石作为微生物载体,使硝化细菌附于其表面生长,这样由于硝化细菌的作用,水相中氨氮浓度逐渐降低,促使交换平衡发生逆转,已被交换吸附在沸石上的NH4+被水中其他阳离子交换下来,被硝化细菌利用。

这样沸石的离子交换容量得到了恢复。

沸石再生最常用的方法是化学法,但用该法再生沸石成本太高,且再生系统复杂。

因此,目前沸石的生物再生成为研究热点。

二、利用天然沸石去除水中的氨氮游少鸿[1]等通过实验研究天然沸石对氨氮的吸附作用及其影响因素。

结果表明,沸石对氨氮的吸附过程遵循准二级动力学模型;在吸附反应初始阶段(0~180min),沸石对氨氮的吸附速率较大,吸附质量比上升很快;随着吸附反应的不断进行,吸附速率降低,吸附质量比上升幅度较小,在6h后吸附基本达到平衡,吸附质量比保持在230mg/kg左右。

30℃、40℃和50℃条件下,天然沸石对氨氮的等温吸附可用Langmuir等温模型拟合,相关系数均达到极显著相关,计算得到的最大吸附质量比由263.16mg/kg增高到370.37mg/kg。

随着天然沸石粒径与投加量的减小,沸石对氨氮的吸附质量比显著增加;在pH值为4~8的范围内,沸石的氨氮去除效果变化不大,当pH为中性时,去除效果最好。

陈彬[2]等研究了天然沸石对氨氮的吸附性能,实验结果表明:天然沸石在去离子水、自来水和生活污水中,对氨氮的吸附符合Langmuir和Freundlish吸附等温方程,天然沸石吸附氨氮的焓变为-16.21 kJ/mol,温度对于天然沸石吸附氨氮的影响不大,天然沸石吸附氨氮同时受液膜扩散和颗粒内扩散的影响,在高初始氨氮浓度的情况下,颗粒内扩散是吸附的主要控制因素,在共存阳离子浓度为50 mg/L 的条件下,共存阳离子对吸附过程的影响不大,相应的影响顺序为:K+>Ca2+>Na+>Mg2+。

张曦[3]等研究了氨氮在天然沸石上的吸附过程,结果表明,天然沸石对氨氮的最大吸附量可达11.5m g/g;在共存阳离子K+作用下,沸石吸附量降低50%以上;王利平[4]等用天然沸石吸附法处理稀土氨氮污水,结果表明,实验条件下天然沸石氨氮去除率为50%。

意大利的Passaglia Ello和GualtieriAlessandrodga[5]研究用天然沸石岩去除污水中的氨氮效果明显,除此而外,将处理完污水的富含氨氮的沸石岩用于改良农业土壤,种植西红柿(用量3kg/m2)可增产16%;用于温室中改良泥炭种植天竺葵,在不施肥的情况下效果也很明显。

三、改性沸石去除水中的氨氮由于天然沸石所含杂质成分比较复杂,孔道常被Na+、Mg2+、H2O等阻塞,并且相互连通的程度也较差,因此,天然沸石的吸附能力往往达不到要求。

为了充分发挥其吸附性及离子交换性,需要将天然沸石改性或改型活化。

1.改性方法及去除氨氮效果方面的进展沸石改性的途径主要有:①高温焙烧。

焙烧可清除沸石孔穴和孔道的水和有机物等,使孔道更畅通,有助于离子扩散;②酸、碱或盐处理。

酸处理可溶解沸石孔穴和孔道的SiO2、Fe2O3和有机物质等杂质,使孔穴和孔道得到疏通;以半径小的H+置换半径大的阳离子,如Ca2+、Na+等,使孔道的有效空间拓宽,增加吸附活性中心等。

酸处理常用的药剂有盐酸和硫酸;碱处理通常采用氢氧化钠;盐处理通常采用氯化钠、氯化钾、氯化铵等[6-7]。

江乐勇[8]等采用吸附法去除水中的氨氮,对天然吸附剂沸石进行盐热改性处理。

结果表明,经过盐热改性后的沸石脱氮能力提高了37.12%,其最佳的改性条件:质量浓度百分数2.0%的NaCl浸渍2 h,焙烧温度500℃,焙烧时间0.5 h。

李晔[9]分别采用加热、酸、碱和盐对天然沸石进行改性,结果发现经硫酸和盐酸改性的沸石去除氨氮效果不明显;用浓度不超过2mo1/L的氢氧化钠改性沸石后氨氮去除率由70%提高到80%以上;而用NaCl溶液在恒温70~75℃下水浴加热3h改性沸石,能明显提高氨氮去除率,改性效果优于加热和碱处理。

袁俊生[10]等利用经20%NaCl溶液活化的20~40目斜发沸石处理氨氮污水,在污水浓度pH值=5的条件下,沸石对铵的平均全交换容量为12.96mg/g,且交换容量随pH值的增大而降低;循环试验显示,污水氨氮去除率达91.3%,达到国家排放标准。

冯灵芝[11]等用酸浸泡、碱浸泡、盐浸泡,以及酸预浸泡后盐浸泡以改性沸石,表明:6%~10%浓度的NaCl溶液改性效果明显,改性沸石的氨氮去除率达95.3%;酸浸改性沸石对氨氮的去除效果明显优于碱浸改性沸石,但酸液预浸泡不能改善沸石对氨氮的吸附性能,且在2h的浸泡时间下,随酸溶液浓度升高,改性沸石的氨氮吸附效果降低。

董秉直[12]研究腐殖酸对改性沸石去除氨氮效果的影响,结果表明:浓度为1mol/L的盐酸浸泡200目的天然沸石12h,经过氯化钠溶液内浸泡24h,最后在105℃下烘干制成的改性沸石其氨氮去除效果很好,且大分子腐殖酸含量越高,对氨氮的去除影响也越大。

吴奇[13]系统研究了不同改性方法对沸石去除氨氮效果的影响。

结果表明:采用质量分数为7%的NaCl溶液改性的沸石最适合于处理氨氮污水,去除效率较未改性沸石提高约20%;碱热熔—碱水热法改性沸石和热活化沸石均不适于去除氨氮污水。

李晔[14]等研究了多孔改性沸石球形颗粒的高温烧成制备方法:按照m(改性沸石)∶m(优质煤粉)∶m(可溶性淀粉)配比的原料加入一定量的水,搅拌后充分捏练,手工成球,90~100℃烘干2h,再放入高温电阻炉中550℃烧成,结果表明:多孔改性沸石球对污水中氨氮的去除率达到80%以上,并且具有较高的强度,能够满足一般水质处理的应用要求。

2.吸附动力学及机理研究常卫民等[15]对沸石的吸附性能进行了实验研究,探讨了沸石投加量、接触时间、沉降时间等因素对其去除氨氮效果的影响。

结果表明,在常温下,pH值约为7时,去除水中氨氮的最佳处理条件为:搅拌20 min,静置30~45min。

含氨氮水样浓度为10mg/L时,按氨氮:沸石量比为1:1000投加沸石时,氨氮去除率达70%以上。

丁仕琼[16]等研究了在不同改性条件下沸石对氨氮的去除效果,结果表明:0.3 mol/L的NaCl溶液在100℃下对沸石的改性效果最佳,氨氮去除率可达87.9%。

江喆[17]研究了盐、酸和稀土改性天然沸石对NH4+吸附动力学。

结果表明,改性对NH4+的吸附符合Freundlich方程。

M.Sarioglu[18]研究了天然沸石和经过酸处理改性的沸石对氨氮的吸附动力学,实验考察了不同的接触时间、不同NH4+浓度、不同流速和不同pH值条件下的吸附量,并得到了吸附等温曲线。

杨胜科[19]等研究了改性沸石去除地下水中氨氮的机理,研究结果表明:改性沸石使受氨氮污染的水质被大幅度地改善,影响沸石去除氨氮的主要因素包括沸石与含氨氮溶液作用时间、沸石用量、溶液中氨氮浓度、沸石粒度和溶液温度等,改性沸石去除氨氮的机理主要是由离子交换作用和吸附作用共同完成的,而以离子交换为主。

赵丹[20]等的研究结果表明:采用饱和氯化钠改性制备得到的粒径为0.5~0.8mm的改性沸石对水中NH4+的吸附等温线能较好地吻合朗格缪尔和Freundlich方程,改性沸石对NH4+的选择性随着pH值的升高而降低。

四、动态实验及复合除氨氮研究进展崔志广[21]等将沸石作为生物滤池的填料,与混凝沉淀、超滤组合后用于处理微污染地表水,考察了其对污染物的去除效果。

结果表明:该组合工艺对氨氮有较好的去除效果,出水氨氮在0.5 mg/L以下,去除率可达90%;对有机物也有较好的去除效果,出水CODMn在2 mg/L左右,去除率约为60%,出水水质达到了《生活饮用水卫生标准》(GB 5749-2006)的要求。

该工艺对氨氮的去除主要由沸石生物滤池完成,而沸石生物滤池、凝沉淀及超滤均能去除CODMn,贡献率分别为49.6%、30.9%、19.5%。

相关主题