当前位置:文档之家› 研究生蛋白质组学解答题集锦

研究生蛋白质组学解答题集锦

一、解释(共15分)1、MALDI TOF MS(10分)基质辅助激光解吸电离/飞行时间质谱(Matrix Assisted Laser Desorption Ionization / Time of Flight Mass Spectra),离子源是基质辅助激光解吸电离,质量分析器是飞行时间管。

MALDI-TOF MS 是近年来获得快速发展的一种软电离生物质谱,它的建立突破了生物大分子质谱分析的难题,该技术无论在理论上还是在设计上都具有简单、高效、灵敏、快速、准确、测定质量范围大等特点。

基本原理:MALDI是利用一定波长的激光脉冲,在极短的时间间隔内,对含被测样品靶物的一个微小区域提供高能量,从固相直接获得离子的电离方法,其基本特点就是使用了固体基质,特别适用于对热敏感或不挥发化合物的离子化,因此在蛋白质组分析中得到了广泛应用。

TOF分析器的离子分离是用非磁方式达到的,离子在离子源中形成后为电场所加速,进入真空无场漂移区,具有不同质荷比的离子因其通过漂移区的时间不同而实现分离,先后到达检测器产生信号。

质量较轻的离子飞行速度快,较早到达检测器;较重的离子飞行速度慢,较晚到达检测器,且离子的飞行时间与其质荷比的平方根( m / z )1/2成正比,因此可以通过检测飞行时间来测定离子的质荷比。

2、免疫共沉淀(5分)Co-Immunoprecipitation(Co-IP),是以抗体-抗原之间的专一性作用为基础的用于研究蛋白质相互作用的经典方法,是确定两种蛋白质在完整细胞内生理性相互作用的有效方法。

基本原理:当细胞在非变性条件下被裂解时,完整细胞内存在的许多蛋白质-蛋白质间的相互作用被保留下来。

如果用蛋白质x的抗体免疫沉淀x,那么与x 在体内结合的蛋白质y也能被沉淀下来。

该技术可用于鉴定两种目标蛋白质是否在体内结合以及进行结合位点分析,还可用来筛选一种特定蛋白质的新的作用搭档。

二、问答题(共85分)1、Western Blotting 的流程(10分)。

答1.收集蛋白样品(Protein sample preparation)2. 电泳(Electrophoresis)(1) SDS-PAGE凝胶配制(2) 样品处理(3) 上样与电泳3. 转膜(Transfer)4. 封闭(Blocking)5. 一抗孵育(Primary antibody incubation)6. 二抗孵育(Secondary antibody inucubation)7. 蛋白检测(Detection of proteins)8. 膜的重复利用(Membrane recovery)2、血浆/血清蛋白质组研究中需要着重注意的问题(10分)。

因血浆血清中的含有各种蛋白质及降解产物,想要获得所需蛋白,需选择适合的前处理条件,尤其在进行血浆的肽组学分析时显得更为重要。

1、血浆/血清样品选择①去血小板的血浆由于避免血小板的激活作用,减少了蛋白质的体外降解,因而较血清更适合一定的肽组学研究;②去血小板的EDTA血浆或枸橼酸血浆样品,更适合分析低分子质量的蛋白质;③如果要使用一定的蛋白酶抑制剂,一定要在早期加入,而且要谨慎使用,因为抑制剂的加入可能对MS分析造成一定的干扰,而且一些小分子的抑制剂与蛋白质结合转化成蛋白质的亚型,这些都将使得分析结果变得复杂。

2、样品的收集与贮存①为减少血小板的污染,血液样品在分析前最好用0.2μm的低蛋白质结合膜过滤,样品分装冰冻储存,减少融化-再冰冻的循环;②样品应分装并贮存在液氮中,减少或不加蛋白酶抑制剂,以减少对测定结果的干扰。

3、去除高丰度蛋白和分级技术血浆/血清样品中蛋白质种类很多,而且所含蛋白质具有较大的动力学范围,其中有许多丰度较高但不含有特殊生物学信息的蛋白质,这将会对目标蛋白质的分析造成极大的困难,甚至根本不能检测低丰度蛋白质,因此,通过对原始蛋白质进行洗脱和分步分离减少样品中蛋白质的复杂性,可以极大简化蛋白质的预测和分析,提高对低丰度蛋白质的检测和识别的灵敏度和准确度。

4、多维策略的运用3、药物蛋白质组学定义及主要研究领域。

试举例说明其在药物靶点的发现和确认中的应用(10分)。

药物蛋白质组学就是蛋白质组学技术在药物研发中的应用。

药物蛋白质组学的主要研究领域:1临床前研究-发现所有可能的药物作用靶点,以及针对这些靶点的全部可能的化合物,以及应用蛋白质组学方法研究药物作用机制和毒理学;2临床研究方面-发现药物作用的特异蛋白作为患者选择有效药物的依据和临床诊断的标志物,或以蛋白质谱的差异将患者分类并给予个体化治疗。

药物蛋白质组学在药物靶点发现和确认中的应用举例:(1)研究人员通过比较给药前后的蛋白质组,找到了药物阿霉素抗乳腺癌的一个作用靶标Hsp27。

(2)疟原虫入侵血红细胞的阻断靶点探测:半胱氨酸蛋白水解酶是疟原虫生存必需的酶,Greenbaum等利用靶向半胱氨酸蛋白水解酶的化学探针I125-DCG-04打靶,然后通过抗DCG-04的生物素纯化,得到了半胱氨酸蛋白水解酶类的亚蛋白质组;通过酶活性分析,最终发现在疟原虫的入侵血红细胞的裂殖期,仅有一个有半胱氨酸蛋白水解酶活性的蛋白质—falcipain 1;从数据库筛选到falcipain 1的抑制剂YA29-Eps,结果证实YA29-Eps可阻断疟原虫的入侵红细胞。

4、结构蛋白质组学与功能蛋白质组学的研究方法和内容的差异,以及在临床研究和应用上的特点与作用(10分)。

5、蛋白质组学在心血管基础和临床研究中的目的和意义(10分)。

临床将研究结果主要用于:①从蛋白质水平研究相关心血管疾病的发病机制;②应用心血管疾病蛋白标记物来更早、更准确地检测心血管疾病,尤其是急性冠脉综合征(ACS);③蛋白质组学来源的信息作为目前患者诊断的补充;④蛋白质组检测获得的信息有利于个体化治疗,为其提供新的治疗靶位;⑤蛋白质组学检测工具和信息用于治疗的各个阶段,可以适时评估治疗的效果和校正治疗方案。

6、目前的蛋白质组学技术在医学研究中的优势和不足(10分)。

蛋白质是机体生理、病理活动功能的直接执行者,对于它的性质和数量变化的精确把握是揭示机体生理变化和疾病病因、发病机制的重要切入点。

与传统的单一蛋白质研究方法相比,组学技术可大大提高诊断的敏感性和特异性,蛋白质组学的这一技术特点无疑在医学研究中具有不可替代的优势,它可以跟踪机体最细微的生理病理变化,通过对疾病特异性蛋白质的寻找,使疾病的早期诊断成为可能。

蛋白质组学技术为正常生理研究、疾病诊断,尤其是早期诊断方面提供了广阔的技术平台,在指导治疗和判断预后等方面具有巨大发挥空间。

蛋白质组学技术在医学研究中的优势体现在各个领域、各个方面,例如,神经生理学方面,由于大脑高度复杂的结构和功能,传统研究方法已难以适应亟待发展的科研及临床需求,而蛋白质组学的出现给神经科学研究带来新的动力;肿瘤的早期诊断及预后判断是目前蛋白质7、鼻咽癌蛋白质组学研究的内容和成果(10分)。

1)NPC不同阶段和分化程度的蛋白质组学研究肿瘤分化过程中蛋白质组动态变化规律的研究对于肿瘤诊断和治疗具有十分重要意义。

FFPE组织蛋白质组学技术的成功建立为肿瘤蛋白质组学研究开拓了更广阔的研究领域(2)肿瘤间质细胞的蛋白质组学研究为阐明肿瘤微环境在鼻咽癌发生发展中的作用及分子机制,从间质中寻找 NPC 诊断或治疗的分子靶标,采用定量蛋白质组学技术对纯化的鼻咽癌间质和正常鼻咽间质进行了研究和比较。

2D- DIGE(荧光双向差异凝胶电泳)技术分离鉴定NPC间质与正常鼻咽间质差异表达蛋白进一步对差异蛋白Periostin的功能及作用机理进行研究,发现:&&Periostin 在NPC间质高表达,&& 其通过与Integrin αVβ5结合,来促进肿瘤细胞的侵袭和转移,表明肿瘤微环境的蛋白质组变异在鼻咽癌发病中发挥重要作用3)NPC放疗抵抗的蛋白质组学部分 NPC 对放疗抗拒,但其机制仍然不甚清楚,因此寻找鼻咽癌放疗抗拒相关的蛋白质,不仅有助于揭示鼻咽癌放疗抗拒的机制,且能为鼻咽癌放疗敏感性预测及鼻咽癌的个体放疗提供科学依。

2DE筛选放疗抵抗(IR)的NPC细胞差异表达蛋白质,研究结果提示:14-3-3σ和Maspin的下调及GRP78和Mn-SOD的上调与放疗抵抗相关,这四个蛋白质有望作为预测鼻咽癌放疗反应的分子标志物4)重要蛋白质和信号分子在NPC发生发展中的作用的蛋白质组学研究P53、TNF-αRKIP: Raf 激酶抑制蛋白P53下调致HSP27和14-3-3σ上调,GRP75下调,上调P53后, HSP27和14-3-3σ下调,GRP75上调。

以上结果为揭示NPC细胞中p53蛋白聚集和功能异常的机制,以及p53基因在NPC发病中的作用提供了新线索通过多角度对鼻咽癌发生发展中的蛋白质动态变化规律的探索和研究,发现了一批在鼻咽癌发生发展中发挥重要作用的蛋白质,为鼻咽癌发生机制和分子标志物筛选提供了重要线索,部分蛋白有望成为肿瘤标志物。

8、双向电泳技术在蛋白质组学研究中的优缺点(8分)。

我双向电泳是当前蛋白质组学研究中分辨率最高、信息量最大的分离技术。

具体优点如下:1). 可以将上千种不同的蛋白质分离开来,并得到每种蛋白质的等电点、表观分子量和含量等信息。

2).如果双向电泳后续接一系列自动化操控,就能大大增加蛋白质分析与鉴定的能力3).可检测翻译后和翻译过程的蛋白质修饰虽然双向电泳是目前蛋白质组学研究中最有效的分离技术,其缺点:1)、不能进行可完全的2-DE分析2)、许多较大的疏水蛋白质在IEF分析中的结果不理想3)、对相对分子质量过大()100000)的蛋白质分离分析能力差 4、双向电泳不易实现自动化操作,不能适应大规模蛋白质组分析的需要5、双向电泳首先由的主要染色技术(考马斯亮兰染色、银染色)的检测领命度较差,且局限在越100倍的动态范围,而细胞中蛋白质表达的动力学范围为百万倍,而且从胶上切割下的蛋白点消化后所产生的肽的回收率常常低于60%,这更会妨碍MS对低丰度蛋白的鉴定。

9、亚细胞蛋白质组学研究的关键及其解决措施(7分)。

由于细胞器在细胞内结构上与许多其他亚细胞组分相关联,和细胞器组成的动态性,所以分离得到的细胞器很难达到100% 的纯度。

所以,亚细胞组分的纯度问题和亚细胞组分生物学功能的深入挖掘是亚细胞蛋白质组研究所面临的挑战。

现在已经有一些研究策略来解决这一难点问题,如Schirmer等提出的差减蛋白质组学方法来解决核膜的内质网污染问题;Andersen 等提出的蛋白质校正谱图分析法(protein correlation profiling,PCP)来分析可能定位于中心体的蛋白质;Jiang 等运用ICAT 技术和生物信息学手段的方法来确证线粒体蛋白质,排除污染蛋白。

相关主题