晶振电路与复位电路
在晶振电路中,主要用到了XTAL1和XTAL2两个引脚。
(1)XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。
(2)XTAL2:来自反向振荡器的输出。
在晶振电路中,AT89C51具有两种晶振方式,一种是片内时钟振荡方式,但需要在引脚外接石英晶体和振荡电容,振荡电容的值一般取10-30pf。
另一种是外部时钟方式,即将XTAL1接外部时钟,XTAL2脚悬空。
本设计的晶振电路如图1所示。
图1 晶振电路
单片机的晶振频率采用11.0592MHZ,外加两个30pF电容。
XTAL1和XTAL2分别为反向放大器的输入和输出,外接石英晶体和振荡电容,构成了片内时钟振荡方式。
而振荡周期指的就是单片机外接石英晶体振荡器的周期。
当时钟起振后,产生一定的频率的时钟信号,单片机的CPU在时钟信号的控制下能一步一步完成自己的工作,同时与整个系统相关的周期还有振荡周期、状态周期、机器周期和指令周期。
电容C1和C2主要用于校正波形,振荡器的作用主要是产生时钟振荡。
而整个电路的作用则是为了产生自激振荡。
引脚RST作用是复位输入。
当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。
在按下按键后,系统自动复位,十分方便。
在复位电路中添加按键主要是为了能够使得复位更加方便,电容主要是在复位后进行充电,而上拉电阻起到限流的作用,保护了电路。
图2复位电路
温度采集电路
温度控制电路主要运用到了DS18B20和AT89C51。
图3 DS18B20管脚图
在硬件上,DS18B20与单片机的连接有两种方法,一种是VCC接外部电源,GND接地,I/O与单片机的I/O线相连;另一种是用寄生电源供电,此时UDD、GND接地,I/O接单片机I/O。
内部寄生电源I/O口线要接5KΩ左右的上拉电阻。
这里采用的是第一种连接方法,如图4所示:
P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚电位被内部上拉电阻拉高,且作为输入。
作为输入时,P2口的管脚电位被外部拉低,将输出电流,这是由于内部上拉的缘故。
图4 温度采集电路
传感器数据采集电路主要指DS18B20温度传感器与单片机的接口电路。
DS18B20可以采用两种方式供电,一种是采用电源供电方式,此时DS18B20的1脚接地,2脚作为信号线,3脚接电源。
另一种是寄生电源供电方式考虑到实际应用中寄生电源供电方式适应能力差且易损坏,此处采用电源供电方式,I/O 口接单片机的P2.4口。
显示电路
在显示电路中,VSS接地,VDD接5V正电源,VEE为液晶显示器对比度调整端,接正电源时对比度最弱,接地电源时对比度最高,为了获得最佳对比度,VEE接地。
RS为寄存器选择,高电平时选择数据寄存器、低电平时选择指令寄存器。
R/W为读写信号线,高电平时进行读操作,低电平时进行写操作。
当RS和RW 共同为低电平时可以写入指令或者显示地址,当RS为低电平R/W为高电平时可以读忙信号,当RS为高电平R/W为低电平时可以写入数据。
E端为使能端,当E端由高电平跳变成低电平时,液晶模块执行命令。
RS和R/W选用不同的高低电平,将影响寄存器的选择。
寄存器选择控制表
RS R/W 操作说明
0 0 写入指令寄存器(清除屏等)
0 1 读busy flag(DB7),以及读取位址计数器(DB0~DB6)值
1 0 写入数据寄存器(显示各字型等)
1 1 从数据寄存器读取数据
由于液晶显示器的功能是显示各字符,所以RS置高电平,R/W接地。
8位双向数据线D0-D7与双向I/O口相连。
图5 液晶显示电路图
报警系统
利用有源蜂鸣器进行报警输出,采用直流供电。
当所测温度超过获高于所预设的温度时,数据口相应拉高电平,报警输出。
而两个发光二极管直接和单片机的P3.6和P3.7相接,当温度大于100度时D1发亮,蜂鸣器报警,反之黄灯D2发亮。
至于报警电路,连接方式如6所示。
图6报警电路电路图。