当前位置:
文档之家› 红外吸收光谱分析法-红外光谱分析基本原理
红外吸收光谱分析法-红外光谱分析基本原理
K化学键的力常数,与键能和键长有关,
为双原子的折合质量 =m1m2/(m1+m2)
发生振动能级跃迁需要能量的大小取决于键两端原子的 折合质量和键的力常数,即取决于分子的结构特征。
表 某些键的伸缩力常数(毫达因/埃)
键类型: 力常数: 峰位:
—CC — > —C =C — > —C — C —
15 17 9.5 9.9
正己烯中C=C键伸缩振动频率实测值为1652 cm-1
三、分子中基团的基本振动形式 1.两类基本振动形式
伸缩振动 亚甲基:
变形振动 亚甲基
2.峰位、峰数与峰强
(1)峰位 化学键的力常数k 越大,原子折合质量越小, 键的振动频率越大,吸收峰将出现在高波数区(短波长区); 反之,出现在低波数区(高波长区)。 例1 水分子
第九章 红外吸收光
谱分析法
第一节 红外光谱分析
基本原理
一、概述
二、红外光谱与有机 化合物结构
三、分子中基团的基 本振动形式
四、影响峰位变化的 因素
一、概述
分子中基团的振动和转动能级跃迁产生:振-转光谱
二、红外光谱与有机化合物结构
红外光谱图: 纵坐标为吸收强度, 横坐标为波长λ ( μm ) 和波数1/λ 单位:cm-1 可以用峰数,峰位, 峰形,峰强来描述。
结束
O H NH 游离
R
R
HN H O 氢键
C=O 伸缩 N-H 伸缩 N-H 变形
1690
3500 1620-1590
1650
3400 1650-1620
HO O
C H3C
O-H 伸缩
OCH3 2835
HO 3705-3125
内容选择:
第一节 红外基本原理 第二节 红外光谱仪器 第三节 红外光谱与分子结构 第四节 红外谱图解析
四、影响峰位变化的因素
化学键的振动频率不仅与其性质有关,还受分子的内部 结构和外部因素影响。各种化合物中相同基团的特征吸收并 不总在一个固定频率上。
1.内部因素
(1)电子效应 a.诱导效应:吸电子基团使吸收峰向高频方向移动(兰移)
R-COR C=0 1715cm-1 ; R-COCl C=0 1800cm-1 ; F-COF C=0 1920cm-1 ;
场效应;空间位阻;环张力
CH
3060-3030 cm-1
2900-2800 cm-1
1576cm-1 1611cm-1 1644cm-1
CH C H2
2
C H2 C H2
1781cm-1 1678cm-1 1657cm-1
1651c键):对峰位,峰强产 生极明显影响,使伸缩振动频率向低波数方向移动。
(2)峰数 峰数与分子自由度有关。无瞬间偶基距变化时, 无红外吸收。
(3)瞬间偶基距变化大,吸收峰强;键两端原子电负性相 差越大(极性越大),吸收峰越强; 例2 CO2分子
(4)由基态跃迁到第一激发态,产生一个强的吸收峰,基 频峰; (5)由基态直接跃迁到第二激发态,产生一个弱的吸收峰, 倍频峰;
R-COH C=0 1730cm -1 ; R-COF C=0 1920cm-1 ; R-CONH2 C=0 1928cm-1 ;
b.共轭效应
O H3C C CH3
O C CH3
1715 cm -1 1685 cm -1
O
O
C CH3
C
1685 cm -1 1660 cm -1
规律:
(2)空间效应
2. 分子振动方程式
(1) 双原子分子的简谐振动及其频率
化学键的振动类似于连接两个小球的弹簧
分子的振动能级(量子化):
E振=(V+1/2)h V :化学键的 振动频率; :振动量子数。
(2) 分子振动方程式
任意两个相邻的能级间的能量差为:
E h h k 2
1 1 k 1307 k
2c
4.5 5.6
4.5m
6.0 m
7.0 m
化学键键强越强(即键的力常数K越大)原子折合质量 越小,化学键的振动频率越大,吸收峰将出现在高波数区。
例题: 由表中查知C=C键的k=9.5 9.9 ,令其为9.6, 计算波数值
v 1 1 k 1307 k
2c
1307 9.6 1650cm1 12 / 2
应用:有机化合物的结构解析。 定性:基团的特征吸收频率; 定量:特征峰的强度;
1.红外光谱产生的条件
满足两个条件: (1) 辐射应具有能满足物质产生振动跃迁所需的能量; (2) 辐射与物质间有相互偶合作用。
对称分子:没有偶极矩, 辐射不能引起共振,无红外活 性。
如:N2、O2、Cl2 等。 非对称分子:有偶极矩, 红外活性。 偶极子在交变电场中的作用 示意图