核技术与核安全课程作业稳定同位素技术的发展及其应用原子核内质子数相同而中子数不同的一类原子称为同位素,它们处在周期表上的同一位置,可分为稳定性同位素和放射性同位素。
放射性同位素的原子核是不稳定的,它通过自发的放出粒子而衰变成另一种同位素。
而不具有放射性的同位素称为稳定同位素,其中一部分是由放射性同位素通过衰变后形成的稳定产物,称为放射成因同位素;另一部分是天然的稳定同位素,是核合成以来就保持稳定,迄今为止还未发现它们能够自发衰变形成其他同位素。
自然界中共有1700余种同位素,其中稳定同位素有270余种。
有的元素由很多的稳定同位素组成,如第50号元素锡含有10个稳定同位素;而有的稳定同位素却仅仅只有一个稳定同位素,如元素氟、钠等。
稳定同位素较放射性同位素具有安全、无污染、易控制的优点,在地质、生态、医药、农业等领域研究中得到广泛应用。
1.稳定同位素技术的发展过程稳定同位素的发现比放射性同位素要晚一些,1912年汤姆孙用电磁分析器(近代质谱计的雏形)才第一次确定了氖-20和氖-22的存在;1927年发现了氧的稳定同位素O 17和O 18;1932年发现了重氢(D )。
1936年尤里等用精馏法从水中富集了O 18,随后又用化学交换法富集了Li 8,C 13,N 15和S 34,不但证实了早年发表过的有关分离的计算理论,同时也发现了化学交换法对大量分离轻同位素很合适的。
与此同时也采取了几种物理方法分离了若干种同位素。
在1930-1941年期间稳定同位素分离还处于探索阶段,此时尚无工业规模的生产,少量分离物只是提供研究同位素本身的核性质以及作为示踪原子用。
到20世纪50年代后期,由于科学技术的进步及稳定同位素特殊性质的逐步显示,才使之得以迅速发展。
我国稳定同位素的研制工作起步于50年代中,60年代首先在农业上获得应用。
之后,在医药学中的应用也取得初步成果。
目前,我国已有一支稳定同位素的研究、生产机应用的技术队伍,个别产品进入了国际市场。
2.稳定同位素分析技术稳定同位素分析是分离研究、生产和应用的前提,它是稳定同位素科学技术中不可缺少的组成部分。
其中最重要的方法是质谱分析,它用于同位素分析已有70年历史,是经典、常用,准确的方法,适用于各种元素同位素质量和浓度测定以及物质成分和结构分析。
近来在样品引入、离子源、分析器以及检出系统等四个主要方面都有重大的改进。
在样品引入部分加上气相色谱,构成色质联用仪器,可以分析复杂混合物样品而不必转化为简单气体。
此外,现在又出现高压液相色谱与质谱联用的更新技术。
在离子化方面出现了许多新型离子化型式,如化学离子化,在离子源中产生的离子基本上是分子离子,谱线要比普通的电子轰击离子化单纯得多,大大提高了检测灵敏度。
又如场致离子化和场解吸离子化,它们都是不直接轰击样品分子,是一种软离子化技术,不出现离子碎片,基本上没有同位素效应的干扰问题,可以直接分析多成分的混合物样品,而且不必像GC-MS 那样需要引入适合于气相色谱的诱导体,所以操作更为简单。
这对多重标记物的分析十分有利,能测定稀释了一百万倍的样品,最小检测量可低到fs(1510 g)。
此外,还有激光离子化、大气压离子化和多点场离子化等。
在分析器方面,除了磁场偏转形式外,还有一种简便的四重极质量过滤器,它是用四根圆棒电极(最好是双曲线断面型式)代替了笨重的磁铁。
对角线上两根电极互成一对,分别加上高压射频电场和直流电场,改变两个电场强度的比值,即可检测一定质荷比的离子。
将磁分析器与静电分析器组合起来,可以做到方向和能量的双聚焦,使仪器的分辨本领提高到610。
近代质谱仪大多用电子倍增器,1910-。
A 的离子流强度也可以检测出来,而采用闪烁探测器和脉冲计数方法还可以检测出2210-A 的离子流强度。
近代质谱仪多用数字显示或打印机直接打印出分析结果,配备微信息电子计算机处理数据并对仪器操作进行程序控制。
在机械结构,抽真空系统和冷却技术等方面也有很大改进,因此不仅仪器体积缩小,重量减轻,工效提高,而且灵敏度有了显著提高,最小检出量一般可达810-~1810-g ,相对灵敏度达810-~910-,满足了稳定同位素标记技术在生物化学、医学和药理学等方面应用的要求。
美国设计了一种医用稳定同位素质谱仪,样品重只需0,1~50μg ,相对灵敏度达510-,质量分析范围为2~700。
只要每天调整一次仪器即可稳定工作,只要将样品插进仪器入口,即可打印输出同位素比值的分析结果,每小时可分析8~10个样品。
还制造了一种具有四个离子流捕集器的呼吸反析用的质谱仪。
第二个重要的分析方法是核磁共振(NMR)。
由于构成有机体主要元素的稳定同位素氢、氧、碳、硫等的核自旋量子数都不等于零,这些原子核在外磁场作用下会像陀螺一样作拉摩进动,如果此时在磁场垂直方向上加上一个射频电场,当它的频率与这些原子核振动频率相同时,即出现共振吸收现象,核的自旋就从原来的取向变为另一个取向,自旋量子数从低能级跃迁到高能级,当再返回到低能级时就放出一定的能量,使得核磁共振能谱上出现峰值。
当磁场强度不变时,发生核磁共振的射频场频率与表征原子核种类的特征值——旋磁比v 有固定的对应关系,因此根据共振时,可以拾出样品中同位素种类,根据峰高,可以测定含量。
但由于它的测定灵敏度较差,一般都不用来作定量分析。
3.稳定同位素技术的应用3.1稳定同位素技术在地质学中的应用地球的大气圈、水圈和岩石圈具有各自的稳定同位素组成特征,每个层圈内部不同物质或同种物质形态之间同位素组成可以有很大差别。
层圈的相互作用导致它们之间同位素的交换和变化。
因此自然界稳定同位素的变化是复杂的,但同时又具有一定的规律性,这就有可能利用稳定同位素地球化学来示踪各层圈物质的来源及相互作用。
例如,利用氢、氧、碳同位素地幔不均一性及地幔去气作用,利用氢氧同位素示踪岩浆热液浊变和水岩相互作用,利用氢、氧、碳同位素示踪变质作用过程,用氢、氧同位素示踪成矿热液来源,用碳、硫同位素示踪热液矿床成矿的物理化学环境,用氧、碳同位素示踪古气候和古环境变迁,用地层碳、氢、氧、硫同位素组成变化进行地层对比。
稳定同位素测温是现代地球化学中迅速发展的一个分支。
近年来, 对氢、氧、碳、硫等同位素比值, 在平衡固一液相和多种共生矿物对之间的分馏系数进行了实验测定不. 丁理论计算,制定出适用于各种地质条件的同位素温度计。
同位素测温方法应用于萝地质科学, 不但能提供各种成岩、成矿环境的温度数据, 而且近年来已开始应用实测同位素分馏系数, 探讨地质作用的平衡性质及其他物理化学条件指标。
同其他地质测温技术相比,同位素测温法具有适用范围广和基本不受压力因素影响的特点。
随着实验数据的积累和质谱分析技术的改进, 同位素测温的精度不断提高, 方法日趋完善。
同位素测温已成为地质工作者手中又一有力工具。
3.2稳定同位素技术在生态学中的应用稳定性同位素技术早在2 0世纪70年代末期就被引入到生态学领域。
最初是利用植物稳定性碳同位素的差异,开展了许多有关营养流动方面的研究;到90年代,稳定性碳和氮同位素被用来分析动物的食性、营养级位置关系以及食物链结构;本世纪初,由于技术的进步,稳定性同位素(特别是氢同位素)被用来开展动物迁徙习性方面的研究。
到目前为止,国内有关这方面的研究还鲜有报道,而且对自然界存在的稳定性同位素的理解还存在一定偏差。
稳定性同位素在示踪动物食性信息、确定营养级位置关系、分析食物网结构以及研究动物迁徙生态学中的起着重要作用。
动物、鸟类的出生地段、繁殖基地和活动区域的植被非放射性同位素组成及浓度就像无形的标签一样把每一个息者准确地进行了标记。
由于体内脂类和蛋白质合成都需要氢原子,所以它们的毛发和羽毛中的重氢含量反映了栖息地的重氢含量。
无论它们走到哪里,只要对它们的毛发、羽毛重氢(即氘)进行测试比较,就可以知道它们的原产地或栖息地,还可以推断出它们的迁徙途径。
比如美丽的北美洲鸣鸟秋季开始向南迁徙,于冬季到达中美洲过冬。
鸟类学家通过对它们迁徙途中脱落的羽毛氘含量测定后得知,在北美洲最北端繁殖栖息的鸣鸟最早在秋季开始南迁,于冬季最早到达中美洲南端,即所谓的蛙跳式迁徙理论,而这些知识除了用同位素术是不可能得到的。
近年来, 动物生态学家也开始将稳定同位素技术应用于动-植物相互关系研究中。
动物同位素组成总是与其生活环境中植物同位素组成相一致, 而且还反映了一段时间内(几小时到几年甚至更长时间)动物所采食的所有食物同位素组成的综合特征。
当动物栖息环境发生变化或动物迁移到一个新的生境中, 动物组织同位素组成又会向新环境的同位素特征转变。
这样, 动物组织同位素组成能真实地反映一段时期内动物的食物来源、栖息环境、分布格局及其迁移活动等信息, 是动物生存状况理想的指示者。
而且, 分析不同时间尺度上动物组织同位素组成还可以深入了解动物对环境变化的适应等过程. 此外, 动物吸收利用营养过程中存在的同位素分馏效应, 为研究动物食物网和群落结构提供了理想工具。
稳定同位素技术可以连续地测出食物网和群落中动物所处的营养级位置, 从本质上揭示动物间捕食与被捕食关系及其在整个生态系统物质平衡和能量流动中的作用, 从而使其成为动-植物相互关系研究中十分重要的、有效的研究工具。
3.3稳定同位素技术在水文中的应用地球上的水分通过蒸发、凝结、降落、渗透和径流形成水的循环, 由于水分子的某些热力学性质与组成它的氢、氧原子的质量有关, 在水的各种状态转化过程中, 组成水分子的氢和氧同位素将发生分馏作用。
随着质谱仪技术的不断完善, 精确测定水样中稳定同位素含量成为可能, 从而使稳定同位素技术被广泛应用于现代水文学中。
同位素技术在水文学方面的应用主要有天然降水同位素分布, 水体蒸发过程中同位素的变化, 地下水年龄、补给来源的测定, 流域产流机制的研究, 流量过程线划分等。
大气降水氢氧同位素组成的变化基本遵循瑞利分馏模式。
瑞利过程是在开放体系中进行的瞬时相平衡过程。
降水可以看作是水汽在云团中达瞬时平衡, 经冷凝后迅速分离出来的过程, 可造成不同地区降水中的同位素分馏。
大气降雨是地下水的主要补给来源, 大气降水的氢氧同位素分布规律和大气降水线方程为开展同位素水文地质研究提供了重要的基础资料。
蒸发过程是水循环的一个重要组成部分, 利用稳定同位素技术研究水体蒸发过程中同位素分馏具有重要意义, 提供了一种计算蒸发量的新方法。
降雨径流问题是水文循环的关键组成部分, 其研究的主要内容是降雨径流关系, 地表水和地下水相互转换的规律, 稳定性氢氧同位素技术为这些研究提供了新的技术。
流域产流机制的研究是水文学研究中最重要的基础问题。
传统的流域模型面临的最大问题是建模所需的信息缺乏, 所以只能停留在概念性模型的水平。