当前位置:文档之家› 基于软开关技术的开关电源设计

基于软开关技术的开关电源设计

摘要软开关PWM技术集谐振变换器与PWM控制的优点于一体,既能实现功率管的零电压开关,又能实现功率管的恒定频率控制,是电力电子技术的发展方向之一。

与传统PWM硬开关变换器相比,元器件的电压、电流应力小,仅仅增加了一个谐振电感,成本和电路的复杂程度没有增加。

移相控制零电压开关PWM变换器就是软开关PWM 技术中的一种拓扑,它适用于中、大功率直流一直流变换场合。

文中详细分析了基本的移相控制ZVS PWM DC-DC全桥变换器的工作过程,讨论了移相控制ZVS PWM DC-DC全桥变换器的零电压开关条件、副边占空比丢失以及整流二极管的换流情况,指出基本的移相控制ZVS PWM DC-DC全桥变换器的不足:滞后桥臂实现零电压开关比较困难;副边占空比丢失严重。

为解决这些问题,提出了利用饱和电感来减少副边占空比丢失的方法并分析了带饱和电感的移相控制ZVS PWM DC-DC全桥变换器的工作过程。

介绍了给滞后桥臂增加辅助电路以改善滞后桥臂开关管的软开关环境的方法,并详细分析了一种带辅助网络的移相控制ZVS PWM DC-DC全桥变换器的工作过程。

它具有辅助电路简单,辅助电路的电感、电容和二极管的电流电压应力小,副边占空比丢失小等优点。

研究了桥式变换器的不平衡问题及解决方法。

初步设计了一个通信用48V/10A的开关电源。

该电源设计过程中,主电路的结构设计及参数计算方法及电路的控制、保护功能都得到了体现。

电路的控制、保护功能是由单片机PIC16F877A完成的,该单片内部有A/D转换模块和PWM模块,简化了电路的设计。

关键词: 开关电源;移相控制;软开关;零电压;占空比ABSTRACTSoft-switching PWM technique integrates the advantage of resonant converter and constant frequency modulator,which realizes zero-voltage-switching in constant frequency,and is one of the development trends of power electronics.Only adding a resonant inductor, stress of voltage and current in devices turns lower than traditional PWM hard-switching, without increasing cost and complication of circuit.Phase Shifted zero-voltage-switching PWM converter(PS-ZVS-PWM converter)is one of the topologies using soft-switching PWM technique,and is suited for middle to high power DC-DC conversion application.This dissertation analyzes the operation principle of PS-ZVS-PWM FB converter systemically.The classical PS ZVS PWM DC-DC FB converter has some disadvantages such as its lagging leg is difficult to achieve ZVS and its loss duty of secondary is large.To alleviate these problems.this paper introduces a PS ZVS PWM DC-DC FB converter using saturable inductor to reduce its loss duty of secondary.This paper also introduces a PS PWM DC-DC FB converter with an auxiliary network attached to its lagging leg.This auxiliary network has the advantages such as its circuit is simple.the current stresses and voltage stresses on its components are small.The question of unbalance on PS PWM DC-DC FB converter is discussed, and the solution to the problem is proposed.Based on the circuit topology, a switch power supply of 48V/10A for communication system is designed.The design of structure and calculation methods of parameter in the DC-DC converter main circuit and the design of the control and protect circuit have been presented.Key Words:Switch power supply;Phase-shifted control;Soft-switching;Zero-voltage-switching;Duty目录摘要第一章绪论 (1)1.1、概述 (1)1.2、开关电源的现状及其发展趋势 (2)1.3、设计内容和设计指标 (4)第二章开关电源技术的理论分析 (5)2.1、开关电源的基本原理 (5)2.2、开关电源的基本拓扑结构 (5)2.2.1、单端反激式变换器 (5)2.2.2、单端正激式变换器 (6)2.2.3、推挽式变换器 (6)2.2.4、半桥式变换器 (7)2.2.5、全桥式变换器 (7)2.3、开关电源的软开关技术 (8)2.3.1、软开关技术的概念 (8)2.3.2、软开关技术的发展 (10)第三章全桥变换器及工作原理 (13)3.1、传统的PWM全桥变换器 (13)3.2、PWM DC-DC全桥变换器的控制 (14)3.3、移相控制ZVS PWM全桥变换器的特点 (16)3.3.1、移相控制ZVS PWM全桥变换器的优点 (16)3.3.2、移相控制ZVS PWM全桥变换器的缺点 (16)3.4、移相控制ZVS PWM全桥变换器的改进 (17)3.4.1、加钳位二极管的移相全桥ZVS PWM变换器 (17)3.4.2、副边加缓冲吸收回路的移相全桥ZVS PWM变换器 183.5、移相控制ZVS PWM全桥变换器的分析 (18)3.5.1、零电压开关条件及实现 (18)3.5.2、副边占空比丢失 (19)第四章移相全桥软开关PWM变换器设计 (20)4.1、设计参数选定 (20)4.2、EMI滤波电路设计 (20)4.3、高频变压器的设计 (21)4.4、谐振电感设计 (23)4.5、输出滤波电路设计 (24)4.6、功率开关器件及二极管的选择 (24)4.7、其他器件选型 (25)第五章控制电路设计 (27)5.1、系统控制方案 (27)5.1.1、控制方案比较 (27)5.1.2、方案论证 (27)5.1.3、整体控制方案 (28)5.2、PIC单片机简介 (28)5.3、采样电路设计 (29)5.4、保护电路设计 (31)5.5、MOSFET驱动电路设计 (32)5.6、辅助电源设计 (35)第六章、软件设计 (38)6.1、总体编程思想 (38)6.2、主程序流程图 (38)6.3、A/D转换流程图 (39)6.4、PI算法子程序 (40)6.5、PWM波控制子程序 (41)6.6、输出过流保护子程序 (42)总结 (43)参考文献 (44)英文原文与翻译 (46)致谢 (64)附录一元器件清单 (65)附录二程序清单 (67)第一章绪论1.1、概述随着电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多。

电子设备的小型化和低成本化使电源向轻、薄、小和高效率方向发展。

电源是对公用电网或某种电能进行变换和控制,并向各种用电负载提供优质电能的供电设备。

电源是一切电子设备的动力心脏,其性能的优劣直接关系到整个系统的安全性和可靠性指标,它可分为线性电源和开关电源两种。

开关电源SPS(Switching Power Supply)被誉为高效节能电源,它代表着稳压电源的发展方向,已成为稳压电源的主流产品。

开关电源内部关键元器件工作在高频开关状态,本身消耗的能量很低,电源效率可达80%-90%,比普通线性稳压电源效率提高近一倍,在通信、计算机及家用电器等领域得到广泛应用,特别是目前便携式设备市场需求巨大,DC-DC开关电源的需求也越来越大,性能要求也越来越高,而DC-DC开关电源的设计也更具挑战性。

开关电源是利用体积很小的高频变压器来实现电压变换及电网隔离的,不仅能去掉笨重的工频变压器,还可采用体积较小的滤波元件和散热器,这就为研究与开发高效率、高精度、高可靠性、体积小、重量轻的开关电源奠定了基础。

近年来,随着电力电子学的高速发展,电力供给系统也得到了很大的发展。

同时,人们对电源的要求也越来越高。

在高效率、大容量、小体积之后,对电源系统的输入功率因数和软开关技术也提出了更高的要求。

从1997年1月,美国、欧洲、日本相继禁止没有进行谐波抑制和功率因数改善的供电系统进入市场,并对高次谐波电流和功率因数制定了详细的国际标准,这样就使世界各国的电源开发研究机构投入了大量的人力、物力来研究这一课题,形成了电源系统研究中的一个新领域。

电源是给电子设备提供所需要的能量的设备,这就决定了电源在电子设备中的重要性。

电子设备要获得好的工作可靠性必须有高质量的电源,所以电子设备对电源的要求日趋增高。

相对于线性稳压电源来说,开关稳压电源的优点更能满足现代电子设备的要求,从20世纪中期开关稳压电源问世以来就倍受关注,特别是20世纪80年代以后,由于电力电子技术的发展和新型电力电子器件的产生,使其在计算机、通信、航天、办公和家用电器等方面得到广泛应用,大有取代线性稳压电源之势。

但是,由于开关电源轻、小、薄的关键技术是高频化,开关电源的高频化就必然对传统的PWM开关技术进行创新,实现ZVS、ZCS的软开关技术已成为开关电源的主流技术,并大幅提高了开关电源的工作效率,近年来国内外的专家学者提出了众多的电路拓扑,使得软开关技术成为电力电子技术研究的热点。

相关主题