无损检测技术简介及发展窦在镇机0801-1 20080520【摘要】【关键字】:无损检测超声波射线激光涡流无损检测技术是利用物质的某些物理性质因存在缺陷或组织结构上的差异使其物理量发生变化这一现象,在不损伤被检物使用性能及形态的前提下,通过测量这些变化来了解和评价被检测的材料、产品和设备构件的性质、状态、质量或内部结构等的一种特殊的检测技术。
本文主要介绍了无损检测技术的目前具体技术原理分类和应用,同时就我国目前的检测技术做综述。
1无损检测简介1.1概念在不破坏的前提下检查共建宏观缺陷或测量工件特征的各种技术的统称。
工业领域中的无损检测类似于人们买西瓜时的“隔皮猜瓜”。
买西瓜时,用手轻轻拍打西瓜外皮,听声响或凭手感,想猜一下西瓜的生熟,这是人们常有的习惯。
如果对猜想有怀疑,则要求切开看个究竟了。
用手轻拍,对西瓜是无有损坏的,非破坏性的,听声响或凭手感猜想西瓜生熟,“隔皮猜瓜”,这是生活中的“无损检测”;而“切开看个究竟”,这就是生活中的破坏性检查了。
不论无损检测技术如何发展,“隔皮猜瓜”这一主旨内涵不变;对检测结果(猜想)有怀疑时,要解剖(切开)进行验证,这一基本思想也不变。
古老而简单的无损检测方法,如敲击器械,听声响,辨别有无裂纹等,是至今沿用的方法;但因它们对缺陷的位置和大小,做不出“基本相符”的判断,而不被视无损检测的技术方法。
只有技术方法才可保证无损检测结果如上所述的准确性和可重复性1.2 无损检测的目的无损检测的目的大体上可从三个主要方面来阐述。
1.2.1 质量管理每一种产品均有其使用性能要求,这些要求通常在该产品的技术文件中规定,例如技术条件、技术规范、验收标准等,以一定的技术质量指标反映。
无损检测的主要目的之一,就是对非连续加工(例如多工序生产)或连续加工(例如自动化生产流水线)的原材料、半成品、成品以及产品构件提供实时的工序质量控制,特别是控制产品材料的冶金质量与生产工艺质量,例如缺陷情况、组织状态、涂镀层厚度监控等等,同时,通过检测所了解到的质量信息又可反馈给设计与工艺部门,促使进一步改进设计与制造工艺以提高产品质量,收到减少废品和返修品,从而降低制造成本、提高生产效率的效果。
例如,某厂生产45#钢球面管嘴模锻件,对锻件进行磁粉检测发现存在锻造折叠,使得锻件报废或需要返修而成为次品,折叠出现率达到30~40%。
通过改进模具设计和模锻前的毛料荒形设计,以及改进模锻时摆放毛料的方式,使折叠出现率下降到0%,杜绝了因为折叠造成的废品和返修品出现,从而大大节约了原材料和能源消耗,节省了返修工时,明显提高了生产效率。
又例如某厂用电弧炉冶炼5CrNiMo热作模具钢,对钢锭开坯锻制成模具毛坯,在投入机械加工之前采用超声波检测,发现比率高达48%存在白点缺陷而导致报废。
经过改进冶炼原材料的质量控制、增加炉料烘烤工艺以去除湿气,并且在钢锭开坯锻制成模具毛坯后立即进行红装等温退火处理等一系列的工艺改进,杜绝了白点的产生,大大提高了钢材的收得率,节约了冶炼与锻造的能源消耗并明显提高了生产效率。
由此可见,在生产制造过程中采用无损检测技术,及时检出原始的和加工过程中出现的各种缺陷并据此加以控制,防止不符合质量要求的原材料、半成品流入下道工序,避免徒劳无功所导致的工时、人力、原材料以及能源的浪费,同时也促使设计和工艺方面的改进,亦即避免出现最终产品的“质量不足”。
另一方面,利用无损检测技术也可以根据验收标准将材料、产品的质量水平控制在适合使用性能要求的范围内,避免无限度地提高质量要求造成所谓的“质量过剩”。
利用无损检测技术还可以通过检测确定缺陷所处的位置,在不影响设计性能的前提下使用某些存在缺陷的材料或半成品,例如缺陷处于加工余量之内,或者允许局部修磨或修补,或者调整加工工艺使缺陷位于将要加工去除的部位等等,从而可以提高材料的利用率,获得良好的经济效益。
因此,无损检测技术在降低生产制造费用、提高材料利用率、提高生产效率,使产品同时满足使用性能要求(质量水平)和经济效益的需求两方面都起着重要的作用。
1.2.2 质量鉴定已制成的产品(包括材料、零部件等)在投入使用或作进一步加工,或进行组装之前,需要进行最终检验,亦即质量鉴定,确定其是否达到设计性能要求,能否安全使用,亦即判别其是否合格,以免给以后的使用造成隐患。
例如,某厂从国外进口的WNr2713热作模具钢轧棒,未经无损检验即投入锻造加工,结果出现大约56%的锻件开裂报废,经济损失很大,其原因是该批轧棒中存在严重的白点缺陷。
又如某厂使用5CrNiMo热作模具钢制成的三吨模锻锤用整体模,在三吨模锻锤上锻制铝合金锻件,仅生产了数十件锻件,模具即开裂报废,按模具的正常设计寿命应能至少生产数千件,其原因是该模具存在严重的过热粗晶。
又如某汽车制造厂从国外进口的汽车发动机曲轴,在装配前发现曲轴轴颈部位存在若干肉眼可见的白斑,经涡流检测确认属于曲轴轴颈表面的氮化层剥落,从而避免了装配后因轴颈快速磨损甚至卡死造成发动机事故,而且通过索赔挽回了可能造成的经济损失。
在许多的产品和制件中,由于例如叶片出现裂纹、齿轮含有夹渣等造成航空发动机试车以及飞行过程中发生损坏,以及类似的因为零部件质量低劣而在后续使用中早期破损甚至酿成灾难性事故的例子和教训是很多的,这里不予赘述。
因此,产品使用前的质量验收鉴定是非常必要的,特别是那些将在高应力、高温、高循环载荷等复杂恶劣条件下以及恶劣环境中工作的零部件或构件等,仅仅靠一般的外观检查、尺寸检查、破坏性抽检等是远远不够的,在这方面,无损检测技术表现出能够百分之百地全面检查材料内外部的无比优越性。
1.2.3 在役检测使用无损检测技术对运行期间或正在运行中的设备构件进行经常性的或者定期的检查,或者实时监控(称为在役检测),能及时发现影响设备继续安全运行或使用的隐患,防止事故的发生。
例如疲劳损伤,或者产品中原有的微小缺陷在使用过程中扩展成为危险性缺陷等等。
特别是对于重要的大型设备,例如锅炉、压力容器、核反应堆、飞机、铁路车辆、铁轨、桥梁建筑、水坝、电力设备、输送管道...等等,防患于未然,更有着不可忽视的重要意义。
定期或不定期在役无损检测的目的并不仅仅是尽早发现和确认危害设备安全运行及使用的隐患并予以及时清除,从经济意义上来说,当今对无损检测技术还要求在发现早期缺陷(例如初始疲劳裂纹)后,通过无损检测技术定期或实时(连续)监视其发展,对所探测到的缺陷能够确定其类型、尺寸、位置、形状与取向等,根据断裂力学理论和损伤容限设计、耐久性等对设备构件的状态、能否继续使用、安全使用的极限寿命或者剩余寿命做出评估和判断。
综上所述,无损检测技术不仅是产品设计制造过程和最终成品静态质量控制的极重要手段,而且是保障产品安全使用与运行的动态质量控制几乎是唯一的手段。
因此,可以说无损检测的必要性贯穿于设计、制造和运行全过程中的各个环节,其目的可以一言以蔽之,即是为了最安全、最经济地生产和使用产品。
必须明确的是,尽管无损检测技术在生产设计、制造工艺和质量管理、质量鉴定与控制、经济成本、生产效率等方面都显示了极其重要的作用,但是无损检测技术本身对具体某项产品而言,似乎并未直接增加什么内容,即不是所谓的“成形技术”。
对产品所期待的使用性能和质量只能在产品制造中达到而不可能在产品检测中达到。
无损检测技术的根本作用只是保证产品的质量或使用性能符合预期的目标,但是它是一种经济效益好的、保证产品质量的、高科技的检测技术。
无损检测技术的基础是物质的各种物理性质或它们的组合以及与物质相互作用的物理现象。
迄今为止,包括在工业领域已获得实际应用的和已在实验室阶段获得成功的无损检测方法已达五、六十种甚至更多,随着工业生产与科学技术的发展,还将会出现更多的无损检测方法与种类。
本书仅能就几个主要方面作简单扼要的介绍。
除了对于工业上已经广泛应用的五大常规无损检测技术(超声波检测、磁粉检测、涡流检测、渗透检测和射线照相检测)给予一定的工艺介绍外,对其他方法仅作概念性介绍。
若需对其中某项方法作深入了解时,应查阅相应方法的专业技术介绍资料。
2无损检测技术2.1激光技术在无损检测领域的应用与发展激光技术在无损检测领域的应用始于七十年代初期,由于激光本身所具有的独特性能,使其在无损检测领域的应用不断扩大,并逐渐形成了激光全息、激光超声等无损检测新技术,这些技术由于其在现代无损检测方面具有独特能力而无可争议地成为无损检测领域的新成员。
1.激光全息无损检测技术激光全息术是激光技术在无损检测领域应用最早、用得最多的方法。
激光全息无损检测约占激光全息术总应用的 25%。
其检测的基本原理是通过对被测物体加外加载荷,利用有缺陷部位的形变量与其它部位不同的特点,通过加载前后所形成的全息图像的叠加来反映材料、结构内部是否存在缺陷。
激光全息无损检测技术的发展方向主要有以下几方面。
(1)将全息图记录在非线性记录材料上,以实现干涉图像的实时显现。
(2)利用计算机图像处理技术获取干涉条纹的实时定量数据。
(3)采用新的干涉技术,如相移干涉技术。
在原来的基础上进一步提高全息技术的分辨率和准确性。
2.激光超声无损检测技术激光超声技术是七十年代中期发展起来的无损检测新技术。
它利用 Q 开关脉冲激光器发出的激光束照射被测物体,激发出超声波,采用干涉仪显示该超声波的干涉条纹。
与其他超声无损检测方法相比,激光超声检测的主要优越性如下。
(1)能实现一定距离之外的非接触检测,不存在耦合与匹配问题。
(2)利用超短激光脉冲可以得到超短声脉冲和高时间分辨率,可以在宽带范围内提取信息,实现宽带检测。
(3)易于聚焦,实现快速扫描和成像。
3.激光无损检测的发展激光超声检测成本高,安全性较差,目前仍处于发展阶段。
但在无损检测领域,激光超声检测在以下几方面的应用前景引起了人们的关注:(1)可用于高温条件下的检测.如热钢材的在线检测;(2)适用于某些不宜接近的样品,如放射性样品的检测;(3)激光束可入射到任何部位,可用于检测形状奇异的样品;(4)可用于超薄超细的样品及表面或亚表面层的检测。
国外近几年已有将激光超声检测用于飞机复合材料的检测、热态钢的在线检测的报道,在化学气相沉积、物理气相沉积、等离子体溅射等高温镀膜工艺过程中膜层厚度的实时检测方面也进行了研究。
2.2超声检测技术在无损检测中的应用与发展超声无损检测技术(UT)是五大常规检测技术之一,与其它常规无损检测技术相比,它具有被测对象范围广。
检测深度大;缺陷定位准确,检测灵敏度高;成本低,使用方便;速度快,对人体无害以及便于现场使用等特点。
1.超声检测技术的应用 (1)目前大量应用于金属材料和构件质量在线监控和产品的在投检查。
如钢板、管道、焊鞋、堆焊层、复合层、压力容器及高压管道、路轨和机车车辆零部件、棱元件及集成电路引线的检测等。