流体力学报告每一门力学学科的建立,都需要建立模型,也就是把实际的问题抽象化,而抽象过程就是把现实中对所研究问题不重要的因素忽略掉,也就是模型假设,从而建立于这个问题相适应的模型进行研究,如果有意义有价值,也就慢慢深入研究,从而形成一门学科,它们都是随社会的发展而发展形成的.比如现如今最前沿的力学学科"纳米力学"就是如此。
我们土木工程常说的三大力学有:1.理论力学---分析力学,振动力学,水力学或称为流体力学(这些研究对材料都不太侧重 )2.材料力学---弹性力学,塑性力学(都是又材料特性而分的) 3.结构力学:就是分析复杂的结构的情形。
在此我重点叙述我对流体力学这门课学科的学习和认知。
一·流体的基本信息解释:流体,是与固体相对应的一种物体形态,是液体和气体的总称.由大量的、不断地作热运动而且无固定平衡位置的分子构成的,它的基本特征是没有一定的形状并且具有流动性。
流体都有一定的可压缩性,液体可压缩性很小,而气体的可压缩性较大,在流体的形状改变时,流体各层之间也存在一定的运动阻力(即粘滞性)。
当流体的粘滞性和可压缩性很小时,可近似看作是理想流体,它是人们为研究流体的运动和状态而引入的一个理想模型。
是液压传动和气压传动的介质。
大气和水是最常见的两种流体,大气包围着整个地球,地球表面的70%是水面。
大气运动、海水运动(包括波浪、潮汐、中尺度涡旋、环流等)乃至地球深处熔浆的流动都是流体的研究内容。
二·流体力学的阐述:流体力学是连续介质力学的一门分支,是研究流体(包含气体,液体以及等离子态)现象以及相关力学行为的科学。
可以按照研究对象的运动方式分为流体静力学和流体动力学,还可按流动物质的种类分为水力学,空气动力学等等。
对流体力学学科的形成作出第一个贡献的是古希腊的阿基米德,他建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础,特别是从20世纪以来,流体力学已发展成为基础科学体系的一部分,同时又在工业、农业、交通运输、天文学、地学、生物学、医学等方面得到广泛应用。
流体力学既包含自然科学的基础理论,又涉及工程技术科学方面的应用。
此外,如从流体作用力的角度,则可分为流体静力学、流体运动学和流体动力学;从对不同"力学模型"的研究来分,则有理想流体动力学、粘性流体动力学、不可压缩流体动力学、可压缩流体动力学和非牛顿流体力学等。
三·对流体的研究假设:连续体假设物质都由分子构成,尽管分子都是离散分布的,做无规则的热运动.但理论和实验都表明,在很小的范围内,做热运动的流体分子微团的统计平均值是稳定的.因此可以近似的认为流体是由连续物质构成,其中的温度,密度,压力等物理量都是连续分布的标量场。
质量守恒质量守恒目的是建立描述流体运动的方程组。
欧拉法描述为:流进绝对坐标系中任何闭合曲面内的质量等于从这个曲面流出的质量,这是一个积分方程组,化为微分方程组就是:密度和速度的乘积的散度是零(无散场)。
用欧拉法描述为:流体微团质量的随体导数随时间的变化率为零。
动量定理流体力学在微观是无限大,并且是低速运动,属于经典力学的范畴。
因此动量定理和动量矩定理适用于流体微元。
应力张量对流体微元的作用力,主要有表面力和体积力,表面力和体积力分别是力在单位面积和单位体积上的量度,因此它们有界。
由于我们在建立流体力学基本方程组的时候考虑的是尺寸很小的流体微元,因此流体微团表面所受的力是尺寸的二阶小量,体积力是尺寸的三阶小量,故当体积很小时,可以忽略体积力的作用。
认为流体微团只是受到表面力(表面应力)的作用。
非各向同性的流体中,流体微团位置不同,表面法向不同,所受的应力是不同的,应力是由一个二阶张量和曲面法向的内积来描述的,二阶应力张量只有三个量是独立的,因此,只要知道某点三个不同面上的应力,就可确定这个点的应力分布情况。
粘性假设流体具有粘性,利用粘性定理可以导出应力张量。
能量守恒具体表述为:单位时间内体积力对流体微团做的功加上表面力和流体微团变形速度的乘积等于单位时间内流体微团的内能增量加上流体微团的动能增量。
四·研究方法进行流体力学的研究可以分为现场观测、实验室模拟、理论分析、数值计算四个方面:现场观测现场观测是对自然界固有的流动现象或已有工程的全尺寸流动现象,利用各种仪器进行系统观测,从而总结出流体运动的规律,并借以预测流动现象的演变。
过去对天气的观测和预报,基本上就是这样进行的。
实验室模拟不过现场流动现象的发生往往不能控制,发生条件几乎不可能完全重复出现,影响到对流动现象和规律的研究;现场观测还要花费大量物力、财力和人力。
因此,人们建立实验室,使这些现象能在可以控制的条件下出现,以便于观察和研究。
同物理学、化学等学科一样,流体力学离不开实验,尤其是对新的流体运动现象的研究。
实验能显示运动特点及其主要趋势,有助于形成概念,检验理论的正确性。
二百年来流体力学发展史中每一项重大进展都离不开实验。
模型实验在流体力学中占有重要地位。
这里所说的模型是指根据理论指导,把研究对象的尺度改变(放大或缩小)以便能安排实验。
有些流动现象难于靠理论计算解决,有的则不可能做原型实验(成本太高或规模太大)。
这时,根据模型实验所得的数据可以用像换算单位制那样的简单算法求出原型的数据。
观测现场观测常常是对已有事物、已有工程的观测,而实验室模拟却可以对还没有出现的事物、没有发生的现象(如待设计的工程、机械等)进行观察,使之得到改进。
因此,实验室模拟是研究流体力学的重要方法。
理论分析理论分析是根据流体运动的普遍规律如质量守恒、动量守恒、能量守恒等,利用数学分析的手段,研究流体的运动,解释已知的现象,预测可能发生的结果。
理论分析的步骤大致如下:首先是建立"力学模型",即针对实际流体的力学问题,分析其中的各种矛盾并抓住主要方面,对问题进行简化而建立反映问题本质的"力学模型"。
流体力学中最常用的基本模型有:连续介质、牛顿流体、不可压缩流体、理想流体、平面流动等。
数值计算其次是针对流体运动的特点,用数学语言将质量守恒、动量守恒、能量守恒等定律表达出来,从而得到连续性方程、动量方程和能量方程。
此外,还要加上某些联系流动参量的关系式(例如状态方程),或者其他方程。
这些方程合在一起称为流体力学基本方程组。
求出方程组的解后,结合具体流动,解释这些解的物理含义和流动机理。
通常还要将这些理论结果同实验结果进行比较,以确定所得解的准确程度和力学模型的适用范围。
五·实验室模拟-----流体动力学实验1·伯努利实验(1)、实验目的要求1、掌握流速、流量、压强等动水力学水力要素的实验量测技术。
2、验证流体定常流的能量方程。
3、通过对动水力学诸多水力现象的实验分析研究,进一步掌握有压管流中动水力学的能量转换特性。
(2)、实验装置自循环伯努利方程实验装置图本实验的装置如图所示,图中:1.自循环供水器2.实验台3.可控硅无级调速器4.溢流板5.稳水孔板6.恒压水箱7.测压计8.滑动测量尺9.测压管10.实验管道 11.测压点 12.毕托管 13.实验流量调节阀。
(3)、实验原理不可压缩流体在管内作稳定流动时,由于管路条件的变化会引起流动过程中三种机械能――位能、动能、静压能的相应改变及相互转换,对于理想流体在系统内任一截面处,虽然三种能量不一定相等,但是能量之和是守恒的。
而对于实际流体,由于存在内摩擦,流体在流动中总有一部分机械能随摩擦和碰撞转化为热能而损耗了。
所以对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械能损失。
以上几种机械能均可用测压管中的液贮高度来表示,分别称为位压头、动压头、静压头。
当测压直管中的小孔与水流方向垂直时,测压管内液柱高度即为静压头,当测压孔正对水流方向时,测压管内液柱高度则为静压头和动压头之和。
测压孔处流体的位压头由测压孔的几何高度确定。
任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。
(4)、实验方法与步骤1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。
2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。
3、打开阀13,观察测压管水头线和总水头线的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测压管水头的变化情况。
4、调节阀13开度,待流量稳定后,测记各测压管液面读数,同时测记实验流量(与毕托管相连通的是演示用,不必测记读数)。
5、再调节阀13开度1-2次,其中一次阀门开度大到使液面降到标尺最低点为限,按第4步重复测量。
通过实验室模拟让我们更加容易理解和学习流体力学;在实验中熟悉流体流动中各种能量和压头的概念及其相互转化关系,加深对伯努利方程的理解;在实验中可以更加直观的观察各项能量,或压头,随流速的变化规律。
六·心得总结学习一门抽象的难以理解学科,例如流体力学,做实验能帮助我们更好的理解和学习流体力学这门课,还有利于培养我们的创造性思维能力和实践能力。
目前的教科书对每个实验的实验目的、使用仪器、内容、方法、步骤乃至记录表格一应俱全。
学习不仅需要智力、能力,更需要求真务实的科学精神,在实验中仪表误差、读数误差、造成实践与理论的脱节,这就要求我们在实验过程中,要实事求是如实地记录实验数据和现象,不允许人为改动,尽可能重做多做实验,直至得出正确的实验结果。
在实验的过程中能培养我们独立分析问题和解决问题的能力。
实验过程中培养了我们在实践中研究问题,分析问题和解决问题的能力以及培养了良好的探究能力和科学道德,例如团队精神、交流能力、独立思考、实验前沿信息的捕获能力等;提高了我们的动手能力,培养理论联系实际的作风,增强创新意识。