当前位置:文档之家› 旋风分离器的设计

旋风分离器的设计

A:采用细而长的器身:减小器身直径可增大惯性离心力,增加器身长度可延
长气体停留时间,所以,细而长的器身有利于颗粒的离心沉降,使分离效率 提高。
B:减小上涡流的影响:含尘气体自进气管进入旋风分离器后,有一小部分气
体向顶盖流动,然后沿排气管外侧向下流动,当达到排气管下端时汇入上升 的内旋气流中,这部分气流称为上涡流。上涡流中的颗粒也随之由排气管排 出,使旋风分离器的分离效率降低。采用带有旁路分离室或采用异形进气管 的旋风分离器,可以改善上涡流的影响。
XLP型:XLP型是带有旁路分离室的旋风分离器,采用蜗壳式进气口,其上沿 较器体顶盖稍低。含尘气进入器内后即分为上、下两股旋流。“旁室”结构 能迫使被上旋流带到顶部的细微尘粒聚结并由旁室进入向下旋转的主气流而 得以捕集,对5am以上的尘粒具有较高的分离效果。根据器体及旁路分离室 形状的不同,XLP型又分为A和B两种形式,其阻力系数值可取〜。
临界粒径de的颗粒d50= J D/Ui(ps—p)]二am
d/ d50=
查询图可知,n为 四台旋风分离器并联
△p=Epui72
取△p=1460Pa,E二,允许的最大气速:Ui=(2△p/Ep)
取de=6am N=5,进气口宽度hB=Vs/ Ui= D2/8 ,
D=
D=4B B=0 0414m
入口高度h=D/2=
d50= J D/Ui(Ps-p)]
对于同一型式且尺寸比例相同的旋风分离器,无论大小,皆可通用同一条粒 级曲线。标准旋风分离器的np与d/d50的关系:
总效率no=2xinpi,Xi为进口处第i段颗粒占全部颗粒的质量分率。
②旋风分离器的压强降
压强降可表示为进口气体动能的倍数:△p=Epui2/2
E为阻力系数,对于同一型式及相同尺寸比例的旋风分离器,E为常数,标
*粒级效率:粒级效率指按颗粒大小分别表示出其被分离的质量分数。
含尘气体中的颗粒通常是大小不均的,通过旋风分离器后,各种尺寸的 颗粒被分离下来的百分率也不相同。通常把气流中所含颗粒的尺寸范围等分 成几个小段,则其中平均粒径为di的第i小段范围颗粒的粒级效率定义为:
npi=(Cli-C2i)/Cli
不同粒径的颗粒,其粒级效率是不同的。根据临界粒径的定义,粒径大于或 等于临界粒径de的颗粒,nP=100%粒级效率为50%勺颗粒直径称为分割直径1/2
D=
D=4B B=
入口高度h=D/2=
处理量= uiBh= m3/s
临界粒径dc的颗粒d50= J D/Ui(ps-p)]1/2
二am
d/ d50=2
查询图可知,n为 四台旋风分离器并联
取△p=1460Pa,E二,允许的最大气速:Ui=(2△p/Ep)1/2=s
取dc=6am N=5,进气口宽度hB=Vs/ Ui= D2/8 ,
扩散式:主要特点是具有上小下大的外壳,并在底部装有挡灰盘(又称反射
屏)。挡灰盘a为倒置的漏斗型,顶部中央有孔,下沿与器壁底圈留有缝隙。 沿壁面落下的颗粒经此缝隙降至集尘箱内,而气流主体被挡灰盘隔开,少量 进入箱内的气体则经挡灰盘顶部的小孔返回器内,与上升旋流汇合经排气管 排出。挡灰盘有效地防止了已沉下的细粉被气流重新卷起,因而使效率提高, 尤其对10am以下的颗粒,分离效果更为明显。
几种类型旋风机分离器的主要性能列于下表:
类型
标准式
XLT/A
XLP/B
扩散式
适宜进口气速
10〜20
10〜18
12〜20
12〜16
u/(m/s)
8
阻力系数Z
10以上
10以上
5以上
10以下
对粒度适应性/am
〜50
宽范围
〜200
对浓度适应性
/(g/m3)
②旋风分离器的选型
选择旋风分离器时,首先应根据具体的分离含尘气体任务,结合各型设
假设:在器内颗粒与气流相对运动为层流;颗粒在分离器内的切线速度
恒定且等于进气处的气速u;颗粒沉降所穿过的最大距离为进气口宽度B,
出临界粒径de的估算式:
旋风分离器进口管的宽度B,标准型B=D/4;Ne:气流的有效旋转圈数,一般
3,标准型3〜5,通常取5;Ui进口气体的速度(m/s);
相的密度
de愈小,分离效率愈高,由估算式可见de随D的加大而增大,即效率随
C:消除下旋流影响:在标准旋风分离器内,内旋流旋转上升时,会将沉集在 锥底的部分颗粒重新扬起,这是影响分离效率的另一重要原因。为抑制这种 不利因素设计了扩期式旋风分离器。
D:排气管和灰斗尺寸的合理设计都可使除尘效率提高。
鉴于以上考虑,对标准旋风分离器加以改进,设计出一些新的结构形式。 目前我国对各种类型的旋风分离器已制定了系列标准,各种型号旋风分离器 的尺寸和性能均可从有关资料和手册中查到。化工中几种常见的旋风分离器:XLT/A型:具有倾斜螺旋面进口,倾斜方向进气可在一定程度上减小涡流的影 响,并使气流阻力较低,阻力系数E值可取~。
准型旋风分离器E=8, —般500〜2000P&
影响旋风分离器性能的因素
气流在旋风分离器内的流动情况和分离机理均非常复杂,因此影响旋风 分离器性能的因素较多,其中最重要的是物系性质及操作条件。一般说来, 颗粒密度大、粒径大、进口气速度高及粉尘浓度高等情况均有利于分离。如 含尘浓度高则有利于颗粒的聚结,可以提高效率,而且可以抑制气体涡流, 从而使阻力下降,所以较高的含尘浓度对压力降与效率两个方面都是有利的。 但有些因素对这两方面的影响是相互矛盾的,如进口气速稍高有利于分离, 但过高则导致涡流加剧,增大压力降也不利于分离。因此,旋风分离器的进 口气速在10〜25m/s范围内为宜。气量波动对除尘效果及压力降影响明显。
内圆筒
净化气体
内螺旋
/■
锥形筒
关风器

旋风分离器的性能参数
在满足气体处理量的前提下,评价旋风分离器性能的主要指标是尘粒的
分离性能和气体经过旋风分离器的压强降。
①分离性能
分离性能的好坏常用理论上可以完全分离下来的最小颗粒尺寸:临界粒 径de及分离效率n表示。
A:临界粒径de:指旋风分离器能100麻去的最小颗粒直径
(4)旋风分离器的结构型式与选用
①旋风分离器的结构型式
旋风分离器的性能不仅受含尘气的物理性质、含尘浓度、粒度分布及操 作条件的影响,还与设备的结构尺寸密切相关。只有各部分结构尺寸恰当, 才能获得较高的分离效率和较低的压力降。近年来,为提高分离效率并降低 压降,在旋风分离器的结构设计中,主要从以下几个方面进行改进:
第六章、旋风分离器尺寸说明(19)
附录
1、参考文献(20)
任务要求
1.除尘器外筒体直径、进口风速及阻力的计算
2.旋风分离器的选型
3.旋风分离器设计说明书的编写
4.旋风分离器三视图的绘制
5.时间安排:2周
6.提交材料含纸质版和电子版
设计条件
风量:900m3/h;
允许压强降:1460Pa
旋风分离器类型:标准型
旋风分离器不适用于处理粘度较大,湿含量较高及腐蚀性较大的粉尘, 气量的波动对除尘效果及设备阻力影响较大。
旋风分离器结构简单,造价低廉,无运动部件,操作范围广,不受温度、
压力限制,分离效率高。一般用于除去直径5um以上的尘粒,也可分离雾沫。
对于直径在5um以下的烟尘,一般旋风分离器效率已不高,需用袋滤器或湿 法捕集。其最大缺点是阻力大、易磨损
D=
D=4B B=
入口高度h=D/2=
处理量= UiBh= m3/s
临界粒径de的颗粒d50= J D/ui(ps—p)]1/2=am
d/ d50=
查询图可知,n为 两台旋风分离器并联
取△p=1460Pa,E二,允许的最大气速:u=(2△p/Ep)1/2=s
2
取dc=6am N=5,进气口宽度hB=Vs/ Ui= D /8 ,
标准型
2
△p=Epui/2
取△p=1460Pa,E二,允许的最大气速:Ui=(2△p/Ep)1/2=s
取dc=6am N=5,进气口宽度hB=Vs/ Ui= D2/8 ,
D=
D=4B B=
入口高度h=D/2=
处理量= uiBh= m3/s
临界粒径dc的颗粒d50= J D/Ui(ps-p)]1/2
二am
入口高度h=D/2=
处理量二UiBh= 0。125nVs
临界粒径dc的颗粒d50=[卩D/Ui(ps—p)]1/2=卩m
d/ d50=2
查询图可知,n为
四台旋风分离器并联 取△p=1460Pa,E二,允许的最大气速:Ui=(2△p/Ep)1/2=s
取dc=6am N=5,进气口宽度hB=Vs/ Ui= D2/8 ,
d/ d50=
查询图(采用实际线)可知,n=
两台旋风分离器并联
△p=Epui2/2
取△p=1460Pa,E二,允许的最大气速:Ui=(2△p/Ep)1/2=s
取dc=6am N=5,进气口宽度hB=Vs/ Ui= D2/8 ,
D=
D=4B B=0。0575m
入口高度h=D/2=处理量=uiBh= s
D=
D=4B B=
入口高度h=D/2=
3
处理量= UiBh= m3/s
D=
D=4B B=0。0372m
入口高度h=D/2=处理量=uiBh= s
临界粒径de的颗粒d50= J D/Ui(ps—p)]二am
d/ d50=
查询图可知,n为
XLP/B型
一台
取△p=1460Pa,E二,允许的最大气速:Ui=(2△p/E p
取de=6am特点,选定旋风分离器的型式,而后通过计算决定尺寸与个数。计算的 主要依据有:含尘气的体积流量;要求达到的分离效率;允许的压力降。 由上面的计算结果可以看出,在处理气量及压力降相同的条件下,本例中串 联四台与并联四台的效率比较接近,但并联时所需的设备尺寸小、投资省。
相关主题