数学与其他科学太阳系中的行星之一——海王星是在1846年在数学计算的基础上发现的。
1781年发现了天王星后,观察它的运行轨道,总是和预测的结果有相当的差距。
是万有引力定律不正确呢?还是有其它原因呢?有人怀疑在它的周围有另一颗行星存在,影响了它的运行轨道。
1844年英国的亚当斯(1819——1892)利用万有引力定律和对天王星观察的数据,推算这颗未知的行星的轨道,花了很长时间计算出这颗未知行星的位置,以及它出现在天空的方位。
亚当斯于1845年9月——10月把它的结果分别寄给了剑桥大学天文台台长查理士和英国格林尼治天文台台长艾里,但是,查理士和艾里迷信权威,把他的结果束之高阁,不予理睬。
1845年法国一个青年天文学家、数学家勒维烈(1811——1877)经过一年多的计算,于1846年9月写了一封信给德国柏林天文台助理员加勒(1812——1910)。
信中说:“请你把望远镜对准黄道上的宝瓶座,就是经度三百二十六度的地方,那时你将在那个地方一度之内,见到一颗九等亮度的星”。
加勒按勒维烈所指的方位进行了观察,果然在离指出的位置相差不到一度的地方找到了一颗在星图上没有的星——海王星。
海王星的发现不仅是力学和天文学特别是哥白尼日心说的胜利,也是数学的伟大胜利。
这样的例子还很多。
如1801年谷神星的发现,意大利天文学家皮亚齐(1746——1826)只记下了这颗小行星沿9度弧的运动,这颗星就又躲藏了起来,皮亚齐和其他天文学家都没有办法求得。
德国二十四岁的高斯根据观察的数据进行了计算,求得了这颗小行星的轨道。
天文学家在这一年的十二月七日在高斯预先指出的地方又重新发现了谷神星。
已过去的百年中,最伟大的科学创造是电磁学理论、相对论和量子理论,它们都广泛地运用了现代数学。
我们在这里先讨论电磁理论,因为我们大家都很熟悉其应用。
在19世纪前半叶,一部分物理学家和数学家对电学和磁学投入了大量研究,但却只有少数几个关于这两种现象特性的数学定律问世,19世纪60年代,麦克斯韦将这些定律汇集起来并研究其一致性。
他发现,为了满足数学上的一致性,必需增加一个关于位移电流的方程。
对于这一项他所能找到的物理意义是:从一个电源(粗略地说是一根载有电流的导线)出发,电磁场或电磁波将向空间传播。
这种电磁波可以有各种不同的频率,其中包括我们现在可以通过收音机、电视机接收的频率以及X射线、可见光、红外线和紫外线。
这样,麦克斯韦就通过纯粹的数学上的考虑预言了当时还属未知的大量现象的存在,并且正确地推断出光是一种电磁现象。
尤为值得注意的是我们对什么是电磁波并无丝毫的物理认识,只有数学断言它的存在,而且只有数学才使工程师们创造了收音机和电视机的奇迹。
同样的观察也被运用于各种原子与核现象。
数学家和理论物理学家谈到场——引力场,电磁场,电子场等等——就好像它们都是实际的波,可以在空间传播,并有点像水波不断拍击船舶和堤岸那样发挥着作用。
但这些场都是虚构的,我们对其物理本质一无所知,它们与那些可直接或间接感觉到或是看得见的事物,例如光、声、物体的运动,以及现在很熟悉的收音机和电视只是隐约地有些关系。
贝克莱曾把导数描述为消失的量的鬼魂,现代物理理论则是物质的鬼魂。
但是,通过用数学上的公式表示这些在现实中没有明显对应物的虚构的场,以及通过推导这些定律的结果,我们可以得到结论,而当我们用物理术语恰当地解释这些结论时,它们又可以用感性知觉来校验。
赫兹(Heinrich Hertz) 这位伟大的物理学家,第一个用实验证实了麦克斯韦关于电磁波能在空间传播的预言。
他为数学的力量所震惊而不能抑制自己的热情,“我们无一例外地感受到数学公式自身能够独立存在并且极富才智,感受到它们的智慧超过我们,甚至超过那些发现它的人,从中我们得到的东西比我们开始放进去的多得多”。
1930年英国物理学家荻拉克,利用数学推理及计算预言存在正电子。
1932年美国物理学家安德逊在试验中证实了这一点。
20世纪最大的科学成就莫过于爱因斯坦的狭义和广义相对论了,但是如果没有黎曼于1854年发明的黎曼几何,以及凯莱,西勒维斯特和诺特等数学家发展的不变量理论,爱因斯坦的广义相对论和引力理论就不可能有如此完善的数学表述。
爱因斯坦自己也不止一次地说过这一点。
例如,1912年夏,他已经概括出新的引力理论的基本物理原理,但是为了实现广义相对论的目标,还必须寻求理论的数学结构,爱因斯坦为此花了3年的时间,最后,在数学家M·格拉斯曼的介绍下掌握了发展相对论引力学说所必需的数学工具——以黎曼几何为基础的绝对微分学,也就是爱因斯坦后来所称的张量分析。
在1915年11月25日发表的一篇论文中,爱因斯坦终于导出了广义协变的引力场方程,在该文中他说:“由于这组方程,广义相对论作为一种逻辑结构终于大功告成!”广义相对论的数学表达第一次揭示了非欧几何的现实意义,成为历史上数学应用最伟大的例子之一。
他还说过“事实上,我是通过她(诺特)才能在这一领域内有所作为的。
”非欧几里德几何是从欧几里德时代起的几千年来,人们想要证明平行公理的企图中,也就是说,从一个只有纯粹数学趣味的问题中产生的。
罗巴切夫斯基创立了这门新的几何学,他自己谨慎地称之为“想象的”,因为还不能指出它的现实意义,虽然他相信是会找到这种现实意义的。
他的几何学的许多结论对大多数人来说非但不是“想象的”,而且简直是不可想象和荒涎的。
可是无论如何罗巴切夫斯基的思想为几何学的新发展以及各种不同的非欧几里德空间的理论的建立打下了基础;后来这些思想成为广义相对论的基础之一,并且四维空间非欧几里德几何的一种形式成了广义相对论的数学工具。
于是,至少看来是不可理解的抽象数学体系成了一个最重要的物理理论发展的有力工具。
同样地,在原子现象的近代理论中,在所谓量子力学中,实际上都运用着许多高度抽象的数学概念和理论,比如,无限维空间的概念等等。
如果没有凯莱在1858年发展的矩阵数学及其后继者的进一步发展,海森伯和狄拉克就无法开创现代物理学量子力学方面的革命性工作。
狄拉克甚至说,创建物理理论时,“不要相信所有的物理概念”,但是要“相信数学方案,甚至表面上看去,它与物理学并无联系。
”整个电磁场的理论是由马克斯威尔方程组表述的,但是“虽然场的理论起源应归功于英国物理学家法拉第,但法拉第不是数学家,他没能发展这个概念。
经过马克斯威尔之手,电场理论得到了精确的描述,成为以后所有场论的模式。
”整个流体运动的理论是由纳维—托克斯方程组表述的,它首先是由法国多科工艺和交通工程学校的力学教授纳维初步完成的,而最终是由英国物理学家和数学家斯托克斯爵士完善并完成的。
计算的技艺——数值分析以及运算速度的问题(计算机的制造),牛顿、莱布尼兹、欧拉、高斯都曾给予系统研究,它们一直是数学的重要部分。
在现代计算机的发展研制中数学家起了决定性的作用。
莱布尼兹,贝巴奇等数学家都曾研制过计算机。
20世纪30年代,符号逻辑的研究方程活跃,丘奇,哥德尔,波斯特和其他学者研究了形式语言。
经过他们以及图灵的研究工作,形成了可计算性这个数学概念。
1935年前后,图灵建立了通用计算机的抽象模型。
这些成果为后来冯·诺伊曼和他的同事们制造带有存储程序的计算机,为形式程序的发明提供了理论框架。
通信的数学理论是由数学家香农(他还具有电气工程的学位)于1948年发表的《通信的数学理论》一书奠定其理论基础的,随后就掀起了持续的信息技术革命。
数学家纳维于1948年出版的《控制论》一书宣告了控制论这门学科的诞生。
自1968年起诺贝尔经济学奖获奖设立项目90%以上都是有关经济学行为的数学建模及相应的研究工作,获奖者中不少人有数学博士学位。
特别要提到的是1994年诺贝尔经济学奖授予纯粹数学家J·纳什是意义重大的,“这意味着在诺贝尔奖93年的历史上,第一次授予了纯数学领域的工作。
”类似的例子还有许多,我们不再举了,我们真正要讨论的问题,是从这些事实中我们得到什么样的启示。
材料科学所关心的是性质和使用。
目的是合成及制造新材料,了解并预言材料的性质以及在一定时间段内控制和改进这些性质。
不久以前,材料科学还主要是在冶金,制陶和塑料业中的经验性研讨,今天却是个大大增长的知识主体,它基于物理科学,工程及数学。
所有材料的性质最终取决于它们的原子及其组合成的分子结构。
例如,聚合体是由简单分子组合成的物质,而这些分子是些重复的结构单元,称之为单体。
单个的聚合体分子可以由数百至百万个单体构成并具有一个线性的,分枝或者网络的结构。
聚合体的材料可以是液态也可以是固态,其性质取决于加工它的方式(譬如,先加热,逐渐冷却,高压)。
聚合体的交错缠绕的排列提出了一个困难的建模问题。
但是,在一些领域中数学模型已经表现得相当可靠,这些模型非常复杂,故而迄今只取得很少几个结果,它们对聚合体加工可能有用,聚合体的较简单但却更表象的模型是基于连续介质力学,但附加了要记忆的一些条件。
对材料科学家来说,解的稳定性与奇点是重要的结果,但甚至对于这些较简单的模型仍缺少数学。
复合材料的研究是另一个运用数学研究的领域,如果我们在一种材料颗粒中搀入另一种材料,得到一种复合材料而其显示的性质可能根本不同于组成它的那些材料,例如汽车公司将铝与硅碳粒子相混合以得到重量轻的钢的替代物。
带有磁性粒子充电粒子的气流能提高汽车的制动气流和防撞装置的效果。
最近十年来,数学家们在泛函分析,PDE及数值分析中发展了新的工具,使他们能够估计或计算混合物的有效性质。
但是新复合物的数目不断增长,同时新的材料也不断被开发出来,迄今所取得的数学成就只能看作一个相当不错的开始。
甚至对已经研究了好些年的标准材料仍面临着大量的数学挑战。
例如,当一个均匀的弹性体在承受高压时会破裂。
破裂是从何处又是怎样开始的,它们是怎样扩展的,何时它们分裂成许多裂片,这些都是有待研究的问题。
数学在生物学、医学等领域正起着越来越重要的作用,无论在生态学、生理学、心理学,以至DNA和生命科学的研究中,我们都看到数学的强大生命力。
甚至医生在做手术之前都可以先进行数学模拟以预知各种方案可能出现的后果,再依据个人的经验来选择手术方案。
2002年美国科学基金会专门在俄亥俄州立大学成立了一个“数学生物科学研究所”。
在生物学和医药科学中也出现了数学模型, 炒得很热的基因方案的一些重要方面需要统计, 模型识别以及大范围优化法。
虽不太热却是长期挑战的是生物学其他领域中的进展, 比如在生理学方面, 拿肾脏作个例子吧, 肾的功能是以保持危险物质( 如盐) 浓度的理想水平来规范血液的组成。
如果一个人摄入了过多的盐,肾就必须排出盐浓度高于血液中所含浓度的尿液。
在肾的四周上有上百万个小管,称作肾单位,负有从血液中吸收盐份转入肾中的职责,他们是通过与血管接触的一种传输过程来完成的,在这个过程中渗透压力过滤起了作用。