当前位置:文档之家› 数字信号处理课件ppt

数字信号处理课件ppt


相关卷积定理:

卷积的相关函数等于相关函数的卷积
e(n)=a(n)*b(n)
f(n)=c(n)*d(n) ref(m)=rac(m) * rbd(m)
ryy(m)= rxx(m)*v(m)=rxy(m)*h(-m)
r h (m) h(m), rh (m) h(m)
时间序列信号模型:

| rws (k ) |2
2 w
1 dz 1 C Sss ( z) H opt ( z)S xs ( z ) z 2πj
通过前面的分析, 因果维纳滤波器设计的一般方法可以按 下面的步骤进行:
(1) 根据观测信号x(n)的功率谱求出它所对应的信号模型的
传输函数,即采用谱分解的方法得到B(z)。 S xs ( z) (2) 求 B( z 1 ) 的Z反变换,取其因果部分再做Z变换,即 S xs ( z ) 舍掉单位圆外的极点,得 B( z 1 ) (3) 积分曲线取单位圆,应用(2.3.38)式和(2.3.39)式,计 算Hopt(z), E[|e(n)|2]min。
m0

k=0, 1, 2, …
利用白化x(n)的方法求解维纳-霍夫方程:
x(n)=s(n)+υ (n)
H(z) (a)
ˆ y ( n) s ( n)
x(
x(n)
1 B( z )
w(n)
G(z) (b)
ˆ y ( n) s ( n)
x(
图2.3.5 利用白化x(n)的方法求解维纳-霍夫方程
2 S xx ( z ) S xs ( z ) S ss ( z ) B( z ) B( z 1 )
1 z N S xs ( z ) 1 H opt ( z ) 2 [ z N B( z )] B( z ) B( z 1 ) B( z ) 1
D (m)
2 x
rxx (m)
2 x (m)
cov xx (m)
2 mx
m
m
rxx (m) 的特性
cov xx (m) 的特性
rxx (m) rxx (m), cov xx (m) cov xx (m) rxy (m) ryx (m), cov xy (m) cov yx (m)
rxx (0) rxx (1) Rxx rxx ( M 1)
rxx (1) rxx ( M 1) rxx (0) rxx ( M 2) rxx ( M 2) rxx (0)
rxx m rxs m rxv m rss m rvv m
现代数字信号处理课程回顾
第一章 时域离散随机信号的分析 第二章 维纳滤波和卡尔曼滤波 第三章 自适应数字滤波器 第四章 功率谱估计 第五章 时频分析

第一章 时域离散随机信号的分析
主要内容:
平稳随机信号的统计描述 随机序列数字特征的估计 平稳随机序列通过线性系统 时间序列信号模型
w(n)
q
H(z)
1 bi z i 1 ai z i
i 1 i 1 p
x(n)
ARMA模型 MA模型
B( z ) H ( z) A( z )
Pxx ( )
2 w
B (e ) A(e j )
2 w j
j
2
H ( z ) B( z )
Pxx ( ) B(e )
1 ˆ' rxx (m) N
N |m|1

n 0
x ( n ) x ( n m)
平稳随机序列通过线性系统:
y (n)
k
h( k ) x ( n k )
k

m y E[ y (n )]
h(k ) E[ x(n k )]
k

ryy (m)
非因果IIR维纳滤波求解:
r xd (k )
m
h ( m) r

xx
(k m) h(k ) rxx (k )
设定d(n)=s(n),对上式两边做Z变换,得到
Sxs(z)=Hopt(z)Sxx(z)
S xs ( z ) H opt ( z ) S xx ( z )
〈x(n)〉=mx=E[X(n)]
1 N * rxx (n, m) E[ X (n) X (m)] lim x (n, i)x(m, i) N N i 1
*
N 1 x (n) x(n m) lim x* (n) x(n m) N N 2 N 1 n *
Pxx ( )
2 w
2
AR模型
1 H ( z) A( z )
1 A(e j )
2
滤波器阶数:
对于IIR滤波器或者AR模型、ARMA模型,阶数是指p的 大小,如果用差分方程表示,则p就是差分方程的阶数。
对于FIR滤波器或者MA模型的阶数,则是指q的大小,或 者说是它的长度减1。
维纳预测:
x(n)=s(n)+υ (n) H(z)
ˆ y(n) s(n)
x(
图2.4.1(a)
维纳滤波器
ˆ y(n) s(n N )
x(n)=s(n)+υ (n)
H(z)
图2.4.1(b)
维纳预测器
2
ˆ E s(n N ) s(n N ) min


纯预测:
假设x(n)=s(n)+v(n),纯预测问题是在v(n)=0情况下对s(n+N), N>0的预测,此时x(n)=s(n)。 因果情况下,假设s(n)与v(n)不相关,纯预测情况下
rxx (m) v m
l
rxx (m l ) h* (k )h(l k )

rxx (m) h* (m) * h m
2 1 j j j Pyy ( z ) Pxx ( z ) H ( z ) H * Pyy e Pxx e H e z *
三种信号模型可以相互转化,而且都具有普遍适用性, 但 是对于同一时间序列用不同信号模型表示时,却有不同的效率。 这里说的效率, 指的是模型的系数愈少,效率愈高。
谱分解定理:
如果功率谱Pxx(ejω)是平稳随机序列x(n)的有理谱,那么一定 存在一个零极点均在单位圆内的有理函数H(z),
q q
H ( z)
满足
B( z ) A( z )
bk z k ak z k
k 0 k 0 p

(1 k z 1 ) (1 k z 1 )
k 1 k 1 p
Pxx ( z) H ( z)H ( z )
2 w 1
0
2 w
式中,ak, bk都是实数,a0=b0=1, 且|αk|<1, |βk|<1。
Pxx(ω)≥0
随机序列数字特征的估计:
估计准则:无偏性、有效性、一致性 1 N 1 ˆ 均值的估计: mx xi

N
i
ˆ ( xn mx )2
n 0
N 1
1 N |m|1 自相关函数的估计:xx (m) ˆ r x(n) x(n m) N | m | n 0
m
0 m M 1 0 m m
FIR 维纳滤波器 因果IIR 维纳滤波器 非因果IIR 维纳滤波器
FIR维纳滤波求解:
rxd (k ) h(m)rxx (k m) h(k ) rxx (k )
m 0 M 1
k=0, 1, 2, …
Rxd Rxxh
rxx (0) | rxx (m) |
各态遍历性:
只要一个实现时间充分长的过程能够表现出各个实现的特 征,就可以用一个实现来表示总体的特性。
1 N mx (n) E[ X (n)] lim x(n, i ) N N i 1
N 1 x(n) lim N x(n) N 2 N 1 n
原理。
* E[ yopt (n)eopt (n)] 0
维纳—霍夫方程:
* * * E x(n k ) d (n) h (m) x (n m) 0 m 0
维纳-霍夫(Wiener-Hopf)方程:
rxd (k ) h(m)rxx (k m) h( k ) rxx ( k )
因果维纳滤波器的复频域最佳解为
1 S xs ( z ) H opt ( z ) 2 B( z ) B( z) B( z 1 ) Gopt ( z ) 1
因果维纳滤波的最小均方误差为
E[| e(n) |2 ]min rss (0)
k 0
h hopt Rxx1Rxd
2 * 2 * E[| e(n) |2 ]min d ( Rxd )T Rxx1Rxd d ( Rxd )T hopt
h1 h 2 h hM
rxd (0) r (1) Rxd xd rxd ( M 1)
rxx(m)
Z变换
Pxx(z)
Z反变换
谱分解
H(z)
2 Pxx ( z) w H ( z)H ( z 1 )
自相关函数、功率谱、时间序列信号模型三者之间关系
第二章 维纳滤波和卡尔曼滤波
主要内容:



FIR维纳滤波求解 非因果IIR维纳滤波求解 因果IIR维纳滤波求解 维纳纯预测 维纳一步线性预测 卡尔曼滤波
相关主题