当前位置:文档之家› 页岩气压裂(哈里伯顿)

页岩气压裂(哈里伯顿)


页岩气
自生自储且具备传统空隙度储层 页岩气吸附在有机质上 高天然Gamma 射线 (80-140 units) 粘土含量一般低于20-30% 主要是石英和碳酸盐 细砂粒,小空隙,高TOC? 产气机理? 是否满足达西定律? 从油源岩扩散?
如何定义页岩气储层?
煤层气
~100 % 吸附
高 TOC
致密气
~100 % 游离
Pr op Co n
冻胶 压裂充填液
ce ntr ati o
n
韧性
Job Volume
整体考虑: 从钻井就开始考虑压裂
σoverburden
σmax
σmin
SPE 86992
水平井还是直井?
This paper was prepared for presentation at the Tight Gas Production Panel of IAPG - 3er Congreso de Producción "Más Reservas, un trabajo de todos" held in Mendosa, Argentina, September 19-22, 2006.
页岩气增产 (压裂) 工艺
斯图尔特.李 高级技术顾问(压裂,固井)
哈里伯顿(中国)增产作业部
什么是非常规储层?
致密和超致密砂岩气
长期持续沉积而成. 低渗 < 0.1 md 河道沉积砂和小扁豆状砂组成 非均值和不连续的储层特点
煤层气
自生自储 低天然Gamma 射线 (<75 API units) 吸附气 湿气 或干气? 需要脱水或脱压 非常规
Tracer of the Frac Treatment Showing A Good Correlation Between the Micro Seismic Events and the Brittleness Calculation
6700
6700
6800
6800
2.31 68.67
6900
327/44 /10 76/20 110/19.2 1500/262
6.5~8.5 3~6 .6~2.2 .5~2 4~8 3~4
9000 9000 11000
60-221
52/41.6 717/251
1~7 10~13 6~11
50-161
23/11.4
页岩气藏开发流程
可压性? 有产量? 稳定性?
Brinell 硬度测试
Shale Comparisons
支撑剂嵌入试验
Shale
岩化作用
Static exposure of ceramic proppant at 275°F for 140 hours in 2% KCl with 10,000 psi closure stress between Ohio Sandstone wafers.
by picking the “right” 选择最佳的压裂段数stages
优化工艺
© 2010 Halliburton. All Rights Reserved. For internal use only
37
页岩储层 – 复杂的网状裂缝
“Textbook” Fracture
min
Fracture Initiates Perpendicular to the Least Principle Rock Stresses
Carbonate
Energy Information Administration, Office of Oil and Gas, Reserves and Production Division, Novembe比较
Play TOC (%) Ro (%) H (ft) P* PSI/ft Area (sq. Mi) Gas Contents (Scf/ton) Estimate GIP/ Recoverable (TCF) Depth (1000ft)
Brinell Hardness
气藏曲线
总有机质碳含量 Vs 含气量
200 Antrim Shale 160 Gas Content (scf/ton) New Albany Shale Caney Shale 120
80
40
0 0 2 4 6 8 10 12 14 16 18 20
TOC (W t. %)
我们都喜欢成功的案例 Barnett Shale Activity 1981 - 2008
为什么要打水平井?
钻水平井的方向?
Shales: SRV ~ Drainage Area
Fr
ac
Az im
Transverse= LARGE SRV
ut h
Longitudinal=SMALL SRV
储层的输送能力
LaserStrat® Service
Challenge During horizontal drilling a fault of undefined displacement was encountered
Solution Chemostratigraphy data indicated drilling upward would position the wellbore in the porosity zone
Barnett Lewis Antrim New Albany Marcellus Caney Fayetteville Haynesville Woodford
3~5 1~2.5 1~20 1~25 3~10 1.2-9 4~9 0.5-4 3~10
0.9-1.4 1.6~1.9 0.4~0.6 0.4~1 0.8-1.4 0.8-2.0 1~4 0.94-2.6 0.7-1.5
200 Antrim Shale 160 G a s C o n ten t (s cf/to n ) New Albany Shale Caney Shale 120
80
40
0 0 2 4 6 8 10 12 14 16 18 20
TOC (Wt. %)
Core Testing - XRD
Gas Content - TOC
常规裂缝
页岩裂缝
Barnett 垂直井 - 微地震波裂缝监测平面图
1500 1000 500 0 -500 -1000 -1500 -2000 -2500 -3000 -1000
South-North (ft)
Observation Well
2001 Barnett 页岩垂直井 (SPE 77441& 90051)
Results Sidetrack was avoided Optimized wellbore placement doubled gas production
Connecting to the reservoir 综合 利用GEMTM 和 ShaleLOG Seamless integration of mineralogy 找到最佳的压裂点 fracture stimulation Optimize hydraulic
-500
Typical Non-Core Area Stage Result
-1000 -1000
Barnett Shale
-500 0 500 1000 1500 2000 2500
West-East (ft)
Northing (ft)
-1000
-1500
400 ft
-2000 -500 0
Barnett Shale
ShaleLOG ®
SPE 123586
Volumemetric
Shale Reservoir Type
Brittleness/ Frac Barrier ID Gas Content/TOC
Reservoir Parameters
Brittle Shale Ductile Shale
微地震波绘图和测井脆度计算有很好的拟合Micro Seismic
• 多方向的网状结 构 • 和天然裂缝交错 • 一英尺长 • 1,200 ft 宽 • 无溢流的邻井
-500 0 500 1000 1500 2000 2500 3000
West-East (ft)
Confidential
复杂的网状缝
裂缝复杂性
3000
SPE 95568 (Devon)
2500
•复杂缝 & 网状缝的形成
综合考虑,整体计划
裂缝监测
100 km
应力监测图例
熟悉地层
• • • • ShaleEvalSM – 前期试验科学,认识储层优化压裂液体 系 Shalelog® Analysis – 选择最佳层位,优化增产设计 GEMTM Tool, LWD, And Laserstrat® – 起裂点,裂缝 延伸控制 DFITSM – 闭合压力,渗透率,和漏失
• 厚度 • 应力 • 天然裂缝 • 空隙压力
South-North (ft)
Network Fracture
Observation Well 1
Perforations
1800 ft
2000
– 储层
1500
1000
500
0
Observation Well 2
-500
– 处理
• 黏度 • 排量 • 施工规模 • 支撑剂选择?
• 超低的渗透率 (NanoDarcies, 孔喉在 3-12 埃 范围内) • 扭曲的裂缝通道 – 复杂的裂缝几何形态 • 天然裂缝发育 • 矿物成分多样 • 生产过程中泥质微粒的运移造成近井筒堵塞 • 自生自储 • 天然裂缝造成净压力高 • 间隔,堆积交错层 • 对液体污染及毛细管力敏感 • 高泄气压力会造成地层出砂,不稳定
相关主题