变形观测与数据处理
• 数据通信技术、计算机技术和以GPS为代表的空 间定位技术的日益发展和完善,使得GPS由原来 的周期性观测走向高精度、实时、连续、自动监 测。 • 用GPS用于变形监测的作业方式可划分为周期性 和连续性两种模式。 • 周期性变形监测与传统的变形监测网没有多大区 别,因为有的变形体的变形极为缓慢,在局部时 间域内可以认为是稳定的,其监测频率有的是几 个月,有的甚至长达几年,此时,GPS静态相对 定位法进行测量,数据处理与分析一般都是事后 的。经过10多年的努力,GPS静态相对定位数据 处理技术已基本成熟。在周期性监测方面,利用 GPS技术的最大屏障还是基准的选择与确定,它 已成为近几年研究的热点。
• 三峡大坝(混凝土重力坝 )
• 小浪底示意图
• 三峡示意图
• 东江水电站(拱坝)
• (2)摄影测量方法 • 包括地面的单张相片摄影测量、地面立体摄影测 量、航空摄影测量等。单相片摄影测量只能测定 平行于摄影机承片框平面上的变形。地面立体摄 影测量可测定物体空间位置的移动和变形,这两 种方法最适于近距离单体建筑物的变形测量。 • 由于计算机技术的广泛应用,使非地形解析摄影 测量方法有了很大的发展,因此在近景摄影变形 测量中不但可用带有框标与定向设备的测量摄影 机,而且可广泛使用非量测用普通摄影机,这就 为摄影测量方法在变形测量中的应用开辟了更广 阔的前景,如数字化摄影测量和实时摄影测量系 统的应用。
• 沉降管
• 型号:GN沉降/测斜管,主要有ABS塑料管、高 强塑料管、铝合金沉降管三种。 • 用途:广泛适用于混凝土大坝、港口建设、隧道 建设、矿山与冶金开采、地质灾害的预防、高层 建筑物及其基础、石油、高等级公路、铁道等岩 土工程中,与测斜仪配合使用,以测量铅垂方向 的垂直位移、边坡滑移等,作为沉降设备的导轨 使用。 • 特点:“U”形导槽结构,定位更精确、可靠轻 质、高强、高柔韧、表面高光洁、综合精度高。 测斜管与测斜管接头采用凹凸槽连接,并用自攻 螺丝固定。测斜管内有供测斜仪探头定向的90° 间隔的导槽,坚固、耐环境腐蚀、导槽无扭旋。
• (3)物理传感器方法 • 所谓传感器就是将观测对象的各种物理量转变为 电信号后以便进行测定的器件,它是变形测量中 的一种有效的方法,它的最大优点是能自动化、 远距离操纵和连续记录。 • 光、机、电技术的发展,研制了一些特殊和专用 的监测仪器可用于变形的自动监测,它包括应变 测量、准直测量和倾斜测量。例如,遥测垂线坐 标仪,采用自动读数设备,其分辨率可达到 0.01mm;采用光纤传感器测量系统将测量与信 号传输合二为一,具有很强的抗雷击、抗电磁场 干扰和抗恶劣环境能力,便于组成遥测系统,实 现在线分布式监测。
• 3)大型精密设施 • 主要对象:射电望远镜、粒子加速器等科学设施 以及军事设施中的各种设备、导轨等; • 鸟巢、水立方; • 电厂传动装置、齿轮组等。
1.1.2 变形测量的目的
• 变形测量的目的,在于获得被研究对象变形过程 中有关变形大小的一切资料,分析研究这些资料 可以监视地表变形和工程建(构)筑物的运营情 况。 • 如利用震前地表变形趋势作地震预报,边坡微小 移动可作为滑坡的报警信号,大坝和尾砂坝的变 形量可以判断坝体是否安全稳固。还可以根据变 形测量量资料,检验设计理论是否正确,提供设 计并修改所需的经验数据,如岩体地下工程监测, 是实现信息化施工的重要手段。
• (4)GPS技术 • 以GPS为代表的现代空间定位技术,已逐渐在越 来越多的领域取代了常规光学和电子测量仪器。 自20世纪80年代以来,GPS卫星定位和导航技术 与现代通信技术相结合,在空间定位技术方面引 起了革命性的变化。 • 用GPS同时测定三维坐标的方法将测绘定位技术 从陆地和近海扩展到整个海洋和外层空间,从静 态扩展到动态,从单点定位扩展到局部与广域差 分,从事后处理扩展到实时(准实时)定位与导 航,绝对和相对精度扩展到dm级、cm级乃至亚 mm级,从而大大拓宽了它的应用范围和在各行 各业中的作用。 • 地学工作者已将GPS应用于地表变形监测的多个 试验中,取得了丰富的理论研究成果,并逐步走 向了实用阶段。
• 连续性变形监测是采用固定监测仪器进行长时间 的数据采集,获取变形数据序列。虽然连续性监 测模式也是对测点进行重复性观测,但其观测数 据是连续的,具有较高的时间分辨率。 • 根据变形体的不同特征,GPS连续性监测可采用 静态相对定位和动态相对定位两种数据处理方法 进行观测。 • 超水位蓄水大坝:要求变形响应的实时性,监测 系统应具有实时的数据传输和数据处理与分析能 力,它对数据解算和分析提出了更高的要求。 • 桥梁静动载试验、高层建筑物振动测量:要求较 高的时间采样率,但数据解算和分析可以是事后 的。
• 变形测量就是针对这些问题进行研究与测量的一 个学科分支,因此变形测量的内容主要有:沉降 测量、位移测量、倾斜测量、裂缝测量和挠度测 量等。 • 从历次测量结果的比较中了解变形随时间发展的 情况。 • 变形测量的周期常随单位时间内变形量的大小而 定。当变形量较大时,测量周期宜短;当变形量 减小,建(构)筑物趋于稳定,测量周期可相应 放长。
变形观测与数据处理
师芸 2014.2
1. 绪论
• 变形监测:利用测量仪器及其它专用仪器和方法 对变形体的变形现象进行监视、观测的工作。 • 任务:确定在各种荷载和外力作用下,变形体的 形状、大小及位置变化的空间状态和时间特征。 • 对象:全球性或区域性的变形研究;工程或局部 性变形研究。 • 工程测量的重要组成:对于重要建(构)筑物在 各种应力作用下是否安全的监视是变形测量的重 要手段。
1.2 变形监测技术及其发展
• 观测对象的变形过程一般都是动态过程,只不过 变形速度有快有慢。通常是通过对被研究对象的 不同离散时刻点进行观测,这时,把对象作静态 系统看待,然后由多个时刻的观测结果,再来研 究其运动的动态过程。 • 变形测量方法的选择取决于变形体的特征、变形 监测的目的、变形大小和变形速度等因素。
1.1.4 变形测量资料分析与管理
• 分析与管理变形测量资料,是变形测量工作的一 个重要组成部分。 • 由于变形测量方法的日益精密,变形测量手段日 益增多,所获取的变形测量数据也越来越多,对 测量成果的分析整理、管理提出了更高的要求。 • 另一方面,由于计算技术的发展,又为这一工作 提供了最理想的工具,如用计算机可视方法进行 变形分析等等已成为现实。
1.2.1 变形测量的主要方法
• 1)根据变形监测的区域范围分类 • 全球性监测方面,空间大地测量是最基本且最实 用的技术,它主要包括全球定位系统(GPS)、 甚长基线射电干涉测量(VLBI)、卫星激光测距 (SLR)、激光测月技术(LLR)以及卫星重力 探测技术。 • 区域性变形监测方面,GPS已成为主要的技术手 段。近20年来发展起来的合成孔径雷达干涉测量 (InSAR),在监测地震变形、地面沉降、山体滑 坡等方面,其试验成果精度可达cm甚至mm级, 表现出很强的技术优势,但精密水准测量依然是 高精度高程信息获取的主要方法。
• 2)工程建(构)筑物 • 常见类型:高层建筑物、桥梁、隧道、水利枢纽、 架空索道、地下井巷、井塔和井架、精密输送带、 冶炼设施、尾矿坝、挡土墙等。 • 常见变形原因:①上述建(构)筑物所处地表变 形引起,如矿区地表移动;②建筑物荷重压实地 基,引起下沉与变形;③地基地质条件变化;④ 季节性或周期性的温度变化;⑤其他外力影响, 如风力、车辆通过的振动等。
1.1 变形监测的内容、目的与意义
• 1.1.1 对象
• 1)地表变形 • 自然原因:地壳板块运动、地球内部岩浆活动等 • 人为原因:人类的技术经济、生产活动引起各类 变形。 • 地下开采引起地表的移动变形;露天矿山开采及 公路、铁路等地表工程所形成的人工边坡可能的 滑坡;人工地下抽水或灌水引起的地表沉降和回 弹;岩溶地区可能产生地面塌陷等。
• VWP型振弦式渗压计
• 特点:智能识别、避雷芯片、同步温度;长期置于 水工建筑物内、外部监测。 • 用途:VWP型振弦式渗压计适用于长期埋设在水工 建筑物或其它混凝土建筑物及地基内,测量结构物 或地基内部的渗透或孔隙的水压力,并可同步测量 埋设点的温度。 应用:VWP振弦式渗压计广泛用于水利水电、公路 铁路、桥梁、隧洞、矿山、国防及建筑工程安全监 测领域物理量的测量,其中诸多项目为国家重点大 型水电工程及重要桥梁。 原理:当被测水压荷载作用在渗压计上,将引起弹 性膜板的变形,其变形带动振弦转变成振弦应力的 变化,从而改变振弦的振动频率。电磁线圈激振振 弦并测量其振动频率,频率信号经水工屏蔽专用电 缆传输至读数装置,即可测出水荷载的压力值。同 时可同步测出埋设点的温度值。仪器具有智能识别 功能。
• 工程和局部性变形监测方面,地面常规测量技术 (如引张线法、三角网法、导线测量等);地面 摄影测量技术;特殊和专用的测量手段(应力应 变计、测缝计、裂缝仪、渗压计、扬压力计、测 压管、渗流量仪、温度计等),以及以GPS为主 的空间定位技术等均得到了较好的应用。
• 2)根据变形监测的手段分类: • (1)常规地面测量方法 • 在这类方法中,视被观测对象的形状、范围以及 测量精度等要求的不同,测定平面位置的变形有 三角网、边角网、测小角法、导线网、引张线准 直测量及交会等其他各种测量方法;测定沉降变 形有精密水准测量、连通管道测量等;高精度全 站仪测量,最有效、最直观,主要用于地表变形 测量。如地震监测、边坡监测,也可用于大型工 程建(构)筑物的变形测量,如水坝、码头等。
• 此外,近十年来新的平差计算方法及统计检验理 论在变形测量成果分析中有了很大的进步。如自 由网平差理论、变形统计检验等等就是明显的例 证。 • 还应该指出的是:在成果分析中,测量工程师不 应只限于得出有关变形的大小及变形规律,而应 作出或参与作出有关变形原因的分析,变形测量 成果也不应只是总工程师桌上的摆设,而应是参 与工程设计、施工与管理的重要资料。 • 这样,变形测量工作将会更充分地发挥其应有的 作用,这是在当前技术发展的过程中从事变形测 量的测量工程师们提出的新课题。