当前位置:
文档之家› 第三章水环境化学-第二节水中无机物的迁移转化资料
第三章水环境化学-第二节水中无机物的迁移转化资料
第三章水环境化学
第二节水中无机污染物的迁移转化
内容要点:
污染物在颗粒物与水之间的迁移 水中颗粒物的聚集 沉淀和溶解
氧化-还原
配位作用
第二节 水中无机污染物的迁移转化
一、污染物在颗粒物与水之间的迁移
1.水中颗粒物的类别 (1)矿物微粒和黏土矿物 矿物微粒: 主要指硅酸盐矿物,其中,石英(SiO2)、 长石(KAlSi3O8)等矿物微粒.颗粒粗、不易碎裂, 缺 乏粘结性。
[Ca
2
K SP 2[CO3 ] CT 2
K SP
将[Ca2+] = CT代入
可得: -lg[Ca2+] = 0.5pKSP–0.5pα2 其中: 据此可以绘制pc-pH图
当 pH > pK2 > 10.33时 α 2≈1,
lg[Ca2+] = 0.5 lg KSP
当pK1< pH < p K2时 则,lg[Ca2+] = 0.5lgKSP–0.5lgk2–0.5pH
(1)胶体粒子间的相互吸引力是范得华力(VA) ,主要为 色散力。胶粒中含有大量分子,所以胶粒间的引力是各 分子所贡献的总和,其大小与距离的三次方成反比;
(2)胶体粒子间的排斥是由于带电胶粒所具有的相同电荷 之间的斥力(VR),其大小取决于电荷数目和相互距离。
(3)当胶体粒子相互靠近时,如果粒子间的引力大于粒子 间的排斥力,则溶胶发生聚沉,是不稳定的;反之,溶胶 是稳定的。当粒子相互聚集在一起时,必须克服一定的能 垒(VT= VR+ VA)。
2-
0 K SP 根据溶度积关系则: [Ca ] 2 K H pCO 2
2
2 ] K p 0 H CO2
由此式可以绘制出pc-pH图(见图3-14)
小 结
难溶盐在天然水体中
发生吸附的表面净电荷的符号 金属离子所起作用 吸附时所发生的反应
-、 0 、 +
配位离子
阳离子交换 配位体交换
发生吸附时要求体系的PH值
吸附发生的位置 对表面电荷的影响 动力学
>零电位点 任意值
扩散层 无 快、可逆 内层 可变 慢、部分不可逆
(2)吸附等温线和等温式
吸附:指溶质在胶体界面层浓度升高的现象,水体中 颗粒物对溶质的吸附是一个动态平衡过程。
在纯水中,CaCO3(S)的溶解度 [Ca2+] = [HCO3-] + [H2CO3*] + [CO32-] = CT
溶质有:Ca2+、H2CO3*、HCO3-、CO32-、H+ 和 OH-.
根据电中性原则: [H+] + 2[Ca2+] = [HCO3-] + 2[CO32-] + [OH-] 根据CaCO3(S)的溶度积:
整理可得:
G G 0C /( A C )
1 / G 1 / G 0 ( A / G 0 )(1 / C )
G0—单位表面饱和吸附量。 A—常数
当溶质浓度甚低时,呈现 H 型;浓度较高时,表现 为 F 型; 统一起来属于L 型的不同区段。
影响吸附的因素
溶液的pH值:
一般情况下颗粒物对重金属的吸附量随 pH值升高而 增大;当溶液pH超过某元素的临界pH值时,元素在溶 液 中的水解、沉淀会起主要作用。 (p175,表3-9)
黏土矿物:(云母、蒙脱石、高岭石)主要是铝镁 的硅酸盐,由其他矿物经化学风化而成,具有晶体 层状结构、有粘性、具有胶体性质, 可以生成稳 定的聚集体。
(2)金属水合氧化物
Al、Fe、Mn、Si等的水合氧化物,在水体中以无机高分 子及溶胶等形式存在,表现出重要的胶体化学性质。
所有金属水合氧化物可以结合水中微量物质,同时本身 又趋于结合在矿物微粒和有机物的界面上
平衡计算结果与实际测定值相差的原因是自然环境非均相沉 淀和溶解过程的影响因素极其复杂。主要表现为: (1)某些非均相平衡过程缓慢,在动态环境下不易达到平衡;
(2)在给定条件下形成的相,不一定是热力学所预测的稳定相; (3)可能存在过饱和现象,即物质的溶解量大于溶解度极限值;
(4)固体溶解所产生的离子可能在溶液中进一步发生反应; (5)引自不同文献的平衡常数有差异。
当 pH < pK1时
≈ K1K2 / [H+]2
则 lg[Ca2+] = 0.5lgKSP – 0.5lgK1k2 –pH
(2)开放体系
CaCO3暴露在含有CO2的气相中,大气中pCO2固定,溶 液中CO2浓度也相应固定。根据亨利定律和前面的讨论:
CT
[CO3
1
0
K H p CO 2
颗粒物的粒度和浓度:
吸附量随粒度增大而减少;当溶质浓度范围固定时, 吸附量随颗粒物浓度增大而减少。
温度变化、几种离子共存等的影响。
(3) 氧化物表面吸附的配合模式
20世纪70年代Stumm、Shindler等人提出,悬浮颗粒物对 水体中带电粒子的吸附都可以由表面络合反应概括。如金属氧 化物表面每平方纳米含有4-10个氢氧根配离子。
2、异体凝聚理论 (1)适用条件:
物质本性不同、粒径不等、电荷号不同、电位高低 不等的分散体系。 (2)主要论点: A 电荷符号相异的胶体微粒接近接近时,吸引力占优势; B 电荷符号相同,但电性强弱不等时,位能曲线上的能峰取 决于荷电较弱,电位较低的一方;在异体凝聚时,只要 有一种胶体的稳定性甚低,电位达到临界状态,就会发 生快速凝聚。
(4)悬浮沉积物 各种环境胶体物 质的聚集体,组成不 固定;可沉降进入水 体底部,也可再悬浮 进入水中。 (5)其他 湖泊中的藻类、 污水中的细菌、病毒 、废水中的表面活性 剂或油滴。
2.水环境中颗粒物的吸附作用
(1)几种吸附作用的概念
表面吸附—胶体具有巨大的比表面和表面能,胶体表 面积越大,吸附作用越强。属于物理吸附。 离子交换吸附—水体中大部分胶体带负电荷,容易吸 附各种阳离子,胶体每吸附一部分阳离子,同时也放 出等量的其他阳离子,称为离子交换吸附作用,属于 物理化学吸附。 离子交换吸附具有可逆性,不受温度影响,交换 能力与溶质的性质、浓度和吸附剂的性质有关。
质子解离
等电点,ZCP
如果可以求出平衡常数的数值,由溶液pH值和离子浓度 可求得表面的吸附量和相应电荷。
3、沉积物中重金属的释放 沉积物中重金属重新进入水体,可产生二次污染。诱发因 素主要有:
(1)碱金属和碱土金属离子将吸附在颗粒物表面的重金属离 子置换出来,是重金属解吸的重要途径之一。
在一定的温度下,当吸附达到平衡时,颗粒物表面上 的吸附量(G)与溶液中溶质平衡浓度 (C) 之间的关 系用吸附等温式表达。
H型( Henry)等温式:
G kC
式中:K——分配系数
1 n
F型(Freundlich)等温式: G kC
用对数表示:
1 lg G lg k lg C n
L型(Langmuir)等温式
2、硫化物
两者相加可得:
溶度积更小的难溶 化合物,表3-11, p188,只要水环境 中有S2-,重金属离 子都可以去除
3.碳酸盐(以CaCO3为例)
(1)封闭体系:
只考虑固相和液相,把H2CO3*当作不挥发酸处理,其CT 为常数,CaCO3的溶解度: CaCO3 = Ca2+ + CO32+ KSP = [Ca2+] [CO32-] = 10-8.23
在计算氧化物或氢氧化物的溶解度时,还应该考 虑金属离子与羟基的配合作用的影响.
以Pb为例:
图中阴影线为PbO与总 溶解态铅,包括Pb2+、 PbOH+、Pb(OH)20、 Pb(OH)3-的相平衡界线.
具有两性特征的氧化物
和氢氧化物固体,与质子和 羟基离子均可反应。故存 在有一个pH值,在该pH 值溶解度最小.
[Ca
2
K SP 2[CO3 ] CT 2
K SP
lg[ Ca2 ] lg K SP - lg CT - lg 2
已知:
[ H ] [ H ] -1 2 (1 ) K1 K 2 K2
由此可绘制出lg[Me2+]对PH的曲线图。
封闭体系,只
考虑固-液平衡, CT为常数条件, 金属Me的碳酸盐 MeCO3溶解度与介 质PH的关系曲线。
水体中胶体颗粒是处于分散状态,还是相互聚集结合成更 粗的粒子,决定着胶体的粒度及其表面污染物的分布变化 规律,也影响到其迁移输送和沉降归宿的距离和去向。
1.胶体颗粒凝聚的基本原理 DLVO理论要点:(Derjagin、Landau、Verwey、 Overbeek四人提出的关于胶体稳定性的理论)
专属吸附—指在吸附过程中,除了化学键作用外,尚有 加强的憎水键和范德化力或氢键作用。该作用可以使表 面电荷改变符号,还可以吸附某些同号电荷的离子。
配合离子、无机高分子、 有机离子、 有机高分子 专属吸附比较强烈;水合
氧化物胶体对金属离子有 较强的专属吸。
图3-5氧化物表面配位吸附模式
水合氧化物对金属离子的专属吸附与非专属吸附的区别 项 目 离子交换 反离子 专属吸附
青海段黄河水
甘肃段黄河水
郑州段黄河水
山东段黄河水
二、水中颗粒物的聚集
胶体颗粒聚集的基本作用力:两胶体颗粒在相互接近时产 生会多种作用力,如多分子范德华力、双电层静电斥力和 水化膜阻力等,其综合效应使颗粒物发生聚集。 两个概念: 凝聚 ---- 由电解质促成的聚集 絮凝 ---- 由聚合物促成的聚集