当前位置:文档之家› DWDM技术原理及发展趋势

DWDM技术原理及发展趋势

DWDM技术原理及发展趋势一、DWDM技术的产生背景1、光网络复用技术的发展通信网络中,包括多种传输媒介,如双绞线、同轴线、光纤、无线传输。

其中,光纤传输的特点是传输容量大、质量好、损耗小、保密性好、中继距离长等。

随着信息时代宽带高速业务的不断发展,不但要求光传输系统向更大容量、更长距离发展,而且,要求其交互便捷。

因此,在光传输系统中引入了复用技术。

所谓复用技术是指利用光纤宽频带、大容量的特点,用一根光纤或光缆同时传输多路信号。

在多路信号传输系统中,信号的复用方式对系统的性能和造价起着重要作用。

光纤传输网的复用技术经历了空分复用(SDM)、时分复用(TDM)到波分复用(WDM)三个阶段的发展。

SDM技术设计简单、实用,但必须按信号复用的路数配置所需要的光纤传输芯数,投资效益较差;TDM技术的应用很广泛,如PDH、SDH、ATM、IP都是基于TDM的传输技术,缺点是线路利用率较低;WDM技术在1根光纤上承载多个波长(信道),使之成为当前光纤通信网络扩容的主要手段。

在过去20年里,光纤通信的发展超乎了人们的想象,光通信网络也成为现代通信网的基础平台。

光纤通信系统经历了几个发展阶段,从70年代末的PDH系统,90年代中期的SDH系统,以及近来风起云涌的DWDM系统,乃至将来的智能光网络技术,光纤通信系统自身正在快速地更新换代。

波分复用技术从光纤通信出现伊始就出现了,80年代末、90年代初,AT&T贝尔实验室的厉鼎毅(T.Y.Lee)博士大力倡导波分复用(DWDM)技术,两波长WDM(1310/1550nm)系统80年代就在美国AT&T网中使用,速率为2×1.7Gb/s。

但是到90年代中期,WDM系统发展速度并不快,主要原因在于:(1)TDM(时分复用)技术的发展,155Mb/s-622Mb/s-2.5Gb/s TDM技术相对简单。

据统计,在2.5Gb/s系统以下(含2.5Gb/s系统),系统每升级一次,每比特的传输成本下降30%左右。

正由于此,在过去的系统升级中,人们首先想到并采用的是TDM技术。

(2)波分复用器件还没有完全成熟,波分复用器/解复用器和光放大器在90年代初才开始商用化。

DWDM发展迅速的主要原因在于:(1)TDM10Gb/s面临着电子元器件的挑战,利用TDM方式已日益接近硅和镓砷技术的极限,T DM已没有太多的潜力可挖,并且传输设备的价格也很高。

(2)已敷设G.652光纤1550nm窗口的高色散限制了TDM10Gb/s系统的传输,光纤色度色散和偏振模色散的影响日益加重。

人们正越来越多地把兴趣从电复用转移到光复用,即从光域上用各种复用方式来改进传输效率,提高复用速率,而WDM技术是目前能够商用化最简单的光复用技术。

(3)光电器件的迅速发展。

1985年英国南安普顿大学首先研制出掺饵光纤放大器。

1990年,比瑞利(Pirelli)研制出第一台商用光纤放大器(EDFA),EDFA的成熟和商用化,使WDM技术长距离传输成为可能。

从技术和经济的角度,DWDM技术是目前最经济可行的扩容技术手段。

2、光通信发展的三个阶段传统的光纤传输技术,经历了准同步数字体系(PDH)、同步数字体系(SDH),和波分复用(W DM)三个阶段,如图1所示。

图1 光通信发展的三个阶段以下将简要介绍PDH、SDH到DWDM的发展过程,以及各种技术的接口规范。

一、DWDM技术的产生背景1、光网络复用技术的发展通信网络中,包括多种传输媒介,如双绞线、同轴线、光纤、无线传输。

其中,光纤传输的特点是传输容量大、质量好、损耗小、保密性好、中继距离长等。

随着信息时代宽带高速业务的不断发展,不但要求光传输系统向更大容量、更长距离发展,而且,要求其交互便捷。

因此,在光传输系统中引入了复用技术。

所谓复用技术是指利用光纤宽频带、大容量的特点,用一根光纤或光缆同时传输多路信号。

在多路信号传输系统中,信号的复用方式对系统的性能和造价起着重要作用。

光纤传输网的复用技术经历了空分复用(SDM)、时分复用(TDM)到波分复用(WDM)三个阶段的发展。

SDM技术设计简单、实用,但必须按信号复用的路数配置所需要的光纤传输芯数,投资效益较差;TDM技术的应用很广泛,如PDH、SDH、ATM、IP都是基于TDM的传输技术,缺点是线路利用率较低;WDM技术在1根光纤上承载多个波长(信道),使之成为当前光纤通信网络扩容的主要手段。

在过去20年里,光纤通信的发展超乎了人们的想象,光通信网络也成为现代通信网的基础平台。

光纤通信系统经历了几个发展阶段,从70年代末的PDH系统,90年代中期的SDH系统,以及近来风起云涌的DWDM系统,乃至将来的智能光网络技术,光纤通信系统自身正在快速地更新换代。

波分复用技术从光纤通信出现伊始就出现了,80年代末、90年代初,AT&T贝尔实验室的厉鼎毅(T.Y.Lee)博士大力倡导波分复用(DWDM)技术,两波长WDM(1310/1550nm)系统80年代就在美国AT&T网中使用,速率为2×1.7Gb/s。

但是到90年代中期,WDM系统发展速度并不快,主要原因在于:(1)TDM(时分复用)技术的发展,155Mb/s-622Mb/s-2.5Gb/s TDM技术相对简单。

据统计,在2.5Gb/s系统以下(含2.5Gb/s系统),系统每升级一次,每比特的传输成本下降30%左右。

正由于此,在过去的系统升级中,人们首先想到并采用的是TDM技术。

(2)波分复用器件还没有完全成熟,波分复用器/解复用器和光放大器在90年代初才开始商用化。

DWDM发展迅速的主要原因在于:(1)TDM10Gb/s面临着电子元器件的挑战,利用TDM方式已日益接近硅和镓砷技术的极限,T DM已没有太多的潜力可挖,并且传输设备的价格也很高。

(2)已敷设G.652光纤1550nm窗口的高色散限制了TDM10Gb/s系统的传输,光纤色度色散和偏振模色散的影响日益加重。

人们正越来越多地把兴趣从电复用转移到光复用,即从光域上用各种复用方式来改进传输效率,提高复用速率,而WDM技术是目前能够商用化最简单的光复用技术。

(3)光电器件的迅速发展。

1985年英国南安普顿大学首先研制出掺饵光纤放大器。

1990年,比瑞利(Pirelli)研制出第一台商用光纤放大器(EDFA),EDFA的成熟和商用化,使WDM技术长距离传输成为可能。

从技术和经济的角度,DWDM技术是目前最经济可行的扩容技术手段。

2、光通信发展的三个阶段传统的光纤传输技术,经历了准同步数字体系(PDH)、同步数字体系(SDH),和波分复用(W DM)三个阶段,如图1所示。

图1 光通信发展的三个阶段以下将简要介绍PDH、SDH到DWDM的发展过程,以及各种技术的接口规范。

3、DWDM在传输网中的定位DWDM是一种能在一根光纤上同时传送多个携带有信息(模拟或数字)的光载波,可以承载SDH 业务、IP业务、ATM业务。

只需通过增加波长(信道)实现系统扩容的光纤通信技术。

它将几种不同波长的光信号组合(复用)起来传输,传输后将光纤中组合的光信号再分离开(解复用),送入不同的通信终端,即在一根物理光纤上提供多个虚拟的光纤通道,我们也可以称之为虚拟光纤。

DWDM在系统中的位置如图2所示。

图2 DWDM在系统中的位置二、WDM的相关定义WDM 波分复用(WDM,Wavelength Division Multiplexing)是指,在1根光纤上承载多个波长(信道)系统,将1根光纤转换为多条“虚拟”纤,每条虚拟纤独立工作在不同波长上。

由于WDM系统技术的经济性与有效性,使之成为当前光纤通信网络最广泛使用的光波复用技术。

WDM通常有3种复用方式,即1310nm和1550nm波长的波分复用、粗波分复用(CWDM)和密集波分复用(DWDM)。

(1)1310 nm和1550 nm波长的波分复用这种复用技术在20世纪70年代初时仅用两个波长:1310nm窗口一个波长,1550nm窗口一个波长,利用WDM技术实现单纤双窗口传输,这是最初的波分复用的使用情况。

(2)密集波分复用(DWDM)简单的说,DWDM技术是指相邻波长间隔较小的WDM技术,工作波长位于1550nm窗口。

可以在一个光纤上承载8~160个波长。

主要应用于长距离传输系统。

图3 DWDM系统示意图(3)粗波分复用(CWDM)CWDM技术是指相邻波长间隔较大的WDM技术,相邻信道的间距一般大于等于20nm,波长数目一般为4波或8波,最多18波。

CWDM使用1200nm ~1700nm窗口。

CWDM采用非制冷激光器、无光放大器件,成本较DWDM低;缺点是容量小、传输距离短。

因此,CWDM技术适用于短距离、高带宽、接入点密集的通信应用场合,如大楼内或大楼之间的网络通信。

1、DWDM基本概念DWDM(Dense Wavelength Division Multiplexing)密集波分复用技术是在波长1550nm窗口附近,在EDFA能提供增益的波长范围内,选用密集的但相互又有一定波长间隔的多路光载波,这些光载波各自受不同数字信号的调制,复合在一根光纤上传输,提高了每根光纤的传输容量。

这些光载波的波长间隔为0.4~2nm,如图4所示。

图4 DWDM载波波长间隔DWDM设备通常由五部分组成,如图5所示。

图5 DWDM系统组成2、DWDM的特点和优势(1)充分利用光纤的带宽资源,传输容量巨大DWDM系统中的各波长相互独立,可透明传输不同的业务,如SDH、GbE、ATM等信号,实现多种信号的混合传输。

如图6所示,多个光信号通过采用不同的波长复用到一根光纤中传输,每个波长上承载不同信号,在一根光纤中传输,大大提高了光纤容量,极大的节约了光纤资源,降低线路建设成本。

图6 DWDM传输容量巨大(2)超长的传输距离利用掺铒光纤放大器(EDFA)等多种超长距传输技术,可以对DWDM系统中的各通路信号同时放大,实现系统的长距传输。

DWDM的超长距传输(3)平滑升级扩容由于DWDM系统中的每个波长通道透明传输数据,不对通道数据进行任何处理,因此,扩容时,只需增加复用光波长通路数即可,方便易行。

3、DWDM的发展趋势3.1 更高的通道速率DWDM系统的通道速率由2.5Gbit/s发展到目前的10Gbit/s,基于40Gbit/s速率的系统已进入商用阶段。

3.2 更多波长复用数量早期DWDM系统多用于8/16/32个波长,通道间隔为100GHz,工作波长位于C波段。

随着技术的不断发展,DWDM系统的工作波长可覆盖C、L波段,间隔50GHz。

如中兴通讯的ZXWM M900设备,最高可提供160波的复用。

3.3 超长的全光传输距离通过提高全光传输的距离,减少电再生点的数量,可降低建网的初始成本和运营成本。

相关主题