当前位置:文档之家› 7 压力容器焊接接头设计

7 压力容器焊接接头设计

7 压力容器焊接接头设计焊接接头由焊缝金属、热阻碍区及相邻母材三部分组成。

在压力容器、锅炉和管道等过程设备中,焊接接头不仅是重要的连接元件,而且与所连接部件一起承担工作压力、其它载荷、温度和化学腐蚀介质的作用。

焊接接头作为整个受压部件或承压设备不可分割的组成部分,对运行可靠性和工作寿命起着决定性的阻碍。

因此,焊接接头的正确设计关于保证产品的质量具有十分重要的意义。

7.1 焊接接头设计基础7.1.1 焊接接头的差不多类型与特点焊接接头要紧起两个作用:一是连接作用,即把被焊件连成一个整体;二是承力作用,即承担被焊工件所受的载荷。

焊接与被焊工件并联的接头,焊缝仅承担专门小的载荷,即使焊缝断裂,结构也可不能赶忙失效,这种接头中的焊缝称为联系焊缝,如图7-1a所示。

焊缝与被焊工件串联的接头,焊缝承担全部载荷,一旦焊缝断裂,结构会赶忙失效,这种焊缝称为承载焊缝,如图7-1b所示。

设计时联系焊缝不一定要求焊透或全长焊接,也不必运算焊缝强度,而承载焊缝必须运算强度,且必须采纳全熔透焊接。

过程设备中常用的典型焊接接头类型有对接接头、T形或十字接头、搭接接头和角接接头等,如图7-2所示。

(a) (b)图7-1 联系和承载焊缝a)联系焊缝b)承载焊缝对接接头较其它接头受力状况好,应力集中程度小,焊接时易保证质量,是优先广泛应用的接头。

关于不同厚度的焊件,为了保证焊透,大多都要把焊件的对接边缘加工成各种形式的坡口。

对接接头焊前对工件的边缘加工和装配要求较高。

通常设备壳体上的纵、环焊缝均为对接接头。

T形及十字形接头能承担各种方向的力和力矩,其接头亦有不同类型,有不焊透和焊透的,有不开坡口和开坡口的。

不开坡口者通常均为不焊透的,其应力集中专门大,不适用于重载或动载荷。

开坡口焊透的T形或十字形接头其应力集中明显减小,适用于承担动载荷及重载荷。

接管、人孔等与设备壳体或封头相连的多为T形或角接接头。

搭接接头的应力分布专门不均,受力状况不行,疲劳强度较低,不宜承担动载荷。

压力容器上的补强圈或支座与壳体和封头的连接一样为搭接接头。

搭接接头T形和十字形接头角接接头图7-2 焊接接头差不多类型角接接头是两被焊件端部间构成大于30o,但小于135o夹角的接头。

其承载能力与其连接形式和坡口类型有关。

法兰、平封头、管板等与筒身和封头的连接一样为角接接头。

7.1.2 焊接接头设计的内容与准则焊接接头与其它连接形式,如铆接、胀接和螺栓连接相比具有令人注目的优点,如减轻结构重量,受力均衡,制造成本低、生产周期短等,但也不可忽视其各区组织不均一性、性能不均一性和存在各种焊接缺陷等缺点。

焊接结构设计师专门应重视上述缺点,从设计上采取有效的措施,尽量克服或减小其不利的阻碍,以确保设备的可靠性。

焊接接头设计的差不多内容为:①确定接头型式和位置;②设计坡口形式和尺寸;③制定对接头质量的具体要求,如探伤要求等。

接头设计的差不多准则是:①焊接接头与母材的等强性等强性的含意应包括常温、高温短时强度,高温持久强度,静载和交变载荷下的强度。

②焊接接头与母材的等塑性接头的塑性与母材的塑性不同。

接头塑性要紧是指接头在结构中的整体变形能力,能经受受压部件在制造过程中和运行过程中复杂的受力条件。

③焊接接头的工艺性焊接接头应布置在便于施工,焊接和检查(包括无损探伤)的部位,焊接坡口形状和尺寸应适应所采纳的焊接工艺,具有较高的抗裂性并能防止焊接变形,应易于形成全焊透的焊缝并能幸免形成其他焊接缺陷。

④焊接接头的经济性焊接是一种消耗能量和优质焊材的工艺过程,故应尽量减小焊接接头的数量,在保证接头强度的前提下减薄焊缝的厚度。

在设计焊接坡口形状时,应在保证工艺性的前提下,尽量减小坡口的倾角和截面。

关于壁厚较薄的受压部件应尽可能采纳不开坡口的先进焊接工艺。

7.1.3 焊接接头设计注意要点在设计焊接接头时,设计人员一样除了依据上述差不多设计准则,注意正确合理地选择焊接接头类型,坡口形状和尺寸外,还必须注意接头的可焊到性、可探伤性以及为防止或减小腐蚀等咨询题。

①接头的可焊到性熔焊接头焊接时,为保证获得理想的接头质量,必须保证焊条、焊丝或电极能方便地到达欲焊部位,这确实是熔焊接头设计时要考虑的可焊到性咨询题。

如图7-3所示,左边箭头所指不便于焊接,质量难以保证;中间便于焊接,但为角焊缝,受载时焊缝根部会产生较大的应力集中;右边改为对接焊缝,不但便于焊接,受力状况好,而且也便于无损探伤检验。

另外,有的结构只能在一侧进行焊接,另一侧由于空间狭小无法进入。

例如各类管道和直径小于500mm的压力容器,均存在不能由内侧施焊的咨询题;大直径容器最后组装的封头与筒体连接环焊缝,若无人孔也无法进入内部焊接。

这种情形设计时应注意将坡口开在外侧,便于在不处进行单面焊双面成型工艺。

图7-3 可焊到性接头比较②尽可能改善施焊环境在注意可焊到性的同时,还应重视尽可能地改善焊接施工的环境。

关于能在内外两侧进行焊接的设备,应注意在壳内进行焊接时大多会有烟尘等有害气氛的阻碍,其焊接环境较不处差。

专门是在内部空间狭小,排气不良和预热条件下,其施焊环境就更差,不但有害焊工健康,而且对确保焊接质量也会产生相当的不利阻碍。

为此,可采纳内小外大的双面坡口或开在外侧的单面坡口,使大部焊接工作量在不处完成。

同时也要注意尽可能选择施焊环境好的焊接方法,如埋弧焊放出的有害气体较手工电弧焊少,又没有明弧的有害作用,劳动强度也小。

③接头的可探伤性要紧是指无损探伤的可能性与方便性。

焊接质量要求越高的接头越要重视接头的可探伤性,专门是射线和超声波的可探伤性。

关于射线探伤,探伤前要按照工件形状和接头形式来选择照耀方向和底片的安放位置。

一样来讲,对接接头最适于射线探伤,通常一次照耀即可;而T形接头和角接头的角焊缝有时需从不同方向多次照耀才不至于漏检。

图7-4左面所示接头均不适于X射线探伤,而改为右面所示接头就能够了。

其中图a是压力容器上的插入式接管角焊缝接头,其焊缝的下方即不能平放也不能弯曲放置胶片。

图b是平封头与筒体之间的连接接头,图b1不宜射线探伤,图b2虽有改善,也不合适,只有图b3才适宜射线探伤。

图c为T型接头,图c1不宜射线探伤,图c2才能进行射线探伤。

从构件截面过渡考虑,图d1过渡陡峭,使射线探伤变得困难,图d2过滤平缓,但局部的壁厚差不仍会阻碍探伤,图d3将接头移到过渡段以外,尽管加工复杂,但最宜于射线探伤。

图e1是未熔透的对接接头,由于存在未熔合间隙,不可能进行探伤,只有图e2那样的熔透接头,才可进行射线探伤。

图f为三通式管接头,只有如图f2那样设计,才能便于进行射线探伤。

插入式接管接头图g1,由于厚度差不加上空间曲率,也不宜进行射线探伤,改成图g2的形式,射线探伤就方便了。

超声波探伤对接头检测面要求具有可接近性和可移动性。

然而,所有存在间隙的T型接头和未熔透的对接接头,都不能或者只能有条件地进行超声波检测。

因此接头的根部处理与焊透是采纳超声波探伤的先决条件。

此外,对奥氏体不锈钢焊缝,目前一样不能采纳超声波探伤,按射线探伤考虑即可。

从缺陷扫查、缺陷定量定位以及探伤的可靠性动身,超声波探伤往往要求尽量进行双向探测,而且应有探头移动区。

这是因为有些缺陷从某个方向进行显示,要比从另一个方向显示容易。

因此,关于板厚不等和管壁与底座的对接接头,应该选择适当的板(壁)厚过渡区。

图7-5所示压力容器不等厚对接接头和图7-6所示接头焊缝超声波探伤的探头移动区最小尺寸la,可分不参照表7-1和表7-2确定。

图7-5 不同厚度对接接头超声波探伤的探头移动区l图7-6 几种压力容器壳体焊接接头超声波探伤的探头移动区L表7-1 不同厚度对接接头焊缝超声波探伤移动区最小尺寸l 板厚(mm)10≤t≤2020≤t<40t≥40探头折射角70o60 o45 o,60 o探头移动区(mm)L不处 5.5t+30 3.5t+30 3.5t+50L里面0.7l不处0.7l不处0.7l不处表7-2 压力容器壳体焊缝超声波探伤探头移动区最小尺寸l板厚t(mm) R+L L L a≤40 1.5t 1.0t 3t>40 1.0t 0.7t 2t④提升焊接接头的抗腐蚀性第一要对所设计的结构在给定工况条件下可能产生的腐蚀类型有个确切了解,在此基础上有针对性地正确选择相应的耐腐蚀结构材料和焊接材料。

在结构上要幸免在应力集中和高应力区布置焊缝,尽量降低对腐蚀专门敏锐部位的刚度和幸免可能引起过大残余应力的结合点或区域,幸免图7-7所示阻碍液体流淌和排放的不合理结构死区。

焊接时尽可能采纳对接接头和连续焊,而不采纳搭接接头和间断焊,以免形成缝隙加剧腐蚀。

图7—7 防腐焊接结构比较7-2 压力容器焊接接头设计7.2.1 压力容器焊接接头的分类锅炉锅筒、管道和各种压力容器均为受压壳体,其焊接接头的结构和要求具有同类性。

其壳体上的焊接接头按受力状态及所处的部位可分为A、B、C、D、E、F六类,如图7-8所示。

其中A、B、C、D四类均为受压壳体上直截了当承担压力载荷的接头;E类是非受压元件与受压壳体间的接头,不承担压力载荷;F类是受压元件表面上的堆焊接头,起耐磨或防腐蚀作用,一样不计入承压厚度。

图7-8 压力容器壳体焊接接头分类A类接头包括圆柱形壳体筒节(包括接管)的纵向接头,球形容器和凸形封头瓜片之间的对接接头,球形容器的环向对接接头及球形封头与筒体相接的环向对接接头,镶嵌式锻制接管与筒体或封头的对接接头,大直径焊接三通支管与母管相接的对接接头。

B类接头系指圆柱形、锥形筒节间的环向接头,接管筒节间及其高颈法兰相接的环向对接接头,除球形封头以外的各种凸形封头与筒身相接的环向接头。

属于C 类接头的有法兰、平封头、端盖、管板与筒身、封头和接管相连的角接接头,内凹封头与筒身间的搭接接头以及多层包扎容器层板间的纵向接头等。

D 类接头是指接管、人孔、手孔、补强圈、凸绿与筒身及封头相接的T 形或角接接头。

E 类接头包括吊耳、支撑、支座及各种内件与筒身或封头相接的角接接头。

F 类接头是在筒身、封头、接管、法兰和管板表面上的堆焊接头。

7.2.2 压力容器焊接接头的特点与设计要求上述压力容器各类焊接接头,由于其结构型式和受力状态不同,其焊接和检验等要求也有所差异。

现作如下重点分析(1)A 、B 类接头压力容器上的A 、B 类焊接接头,要紧是壳体上的纵、环向对接接头,是受压壳体上的主承力焊接接头。

这类接头要求采纳全焊透结构,且如图7-9a 所示,应尽量采纳双面焊的全焊透对接接头。

如因结构尺寸限制,只能从单面焊接时,也可采纳单面坡口的接头,但必须保证能形成相当于双面焊的全焊透对接接头。

为此,采纳氩弧焊之类的焊接工艺完成全熔透的打底焊道,或在焊缝背面加衬板来保焊缝根部完全熔透或成型良好,如图7-9b 、c 所示。

相关主题