目录1.系统概述 (1)1.1系统设计说明 (1)1.2系统结构及组成 (1)1.3系统设计原理及规 (2)2.输入条件 (2)2.1标杆车基本参数 (2)2.2LF7133确定的整车参数 (4)3.系统计算及验证 (4)3.1方向盘转动圈数 (4)3.2齿轮齿条式转向系的角传动比 (5)3.3车轮实际最大转角 (5)3.4静态原地转向阻力矩 (6)3.5静态原地转向时作用于转向盘的力 (6)3.6最小转弯半径的校核 (7)4.总结 (8)参考文献 (9)1.系统概述1.1系统设计说明LF7133是在标杆车的基础上开发设计的一款全新车型,其转向系统是在标杆车转向系统为依托的前提下,根据总布置设计任务书而开发设计的。
根据项目要求,需要对转向系统各参数进行计算与较核,以确保转向系统的正常使用,使系统中各零部件之间参数匹配合理,并且确保其满足国家相关法律法规的要求。
1.2系统结构及组成LF7133转向系统是在标杆车的基础上,根据驾驶室和发动机舱的布置,对转向管柱、方向盘和转向器等作相应调整与优化设计。
为提高汽车行驶的安全性,转向系必须转向轻便、灵活,以减轻司机的疲劳。
LF7133电动助力转向系统中转向器采用齿轮齿条式转向器、电动助力转向管柱的结构方式。
该结构紧凑,布置方便,降低油耗,工作可靠,维修方便,并且满足了整车的各项指标。
1).转向系统的结构简图32图1 转向系统结构简图1、转向器2、电动助力转向管柱3、转向盘2).转向系统的转向梯形示意简图由于LF7133转向系结构与布置情况参照标杆车设计,所以LF7133与标杆车转向梯形示意图一致,如下图2所示。
1.3系统设计原理及规对于液压动力转向系的设计,在保证系统拥有正常助力功用的情况下,还应满足如下的技术要求:1).根据GB17675-1999 汽车转向系基本要求的规定,同样要求在不带助力转向时转向力应小于254N。
2).对于乘用车来说,还要求转向盘转动在总圈数一般不超过4圈。
3).在转向系最大转角时,要求其最小转弯直径满足整车总布置参数。
2.输入条件2.1标杆车基本参数对于标杆车其参数采集可分为为直接测量参数和间接计算参数,对于标杆车具体的参数如下:1).直接测量参数表1 标杆车基本参数2). 标杆车转向系统主要计算参数 转向器小齿轮节圆半径:4.820cos 14.325.49cos 2cos 222=︒⨯⨯==⇒⋅=θπθπL r r L mm转向器小齿轮旋转圈数:07.35.491521===S S n 圈 标杆车角传动比:46.137.414.4036007.3360=+⨯=⇒+⨯=⇒==--wo Ri L i wo kk w wo i n i d d i δδβϕωω通过标杆车逆向数据其最大转角标i δ=42.8°。
则由于转向拉杆连接球头、转向器齿轮齿条啮合间隙以及万向传动轴、方向盘连接等转向系连接结构中存在转向行程损失可以直接进行估算。
其转向系统转向行程损失:%9.95%1008.422/7.414.40=⨯+==⇒⋅=)(标标i i wowoi i δδηηδδ 2.2 LF7133整车参数根据对标杆车数据的综合分析,结合LF7133整车的实际情况,对LF7133车型转向系统参数设计取值如下表所示:3. 系统计算及验证3.1 方向盘转动圈数︒⨯⨯⨯==⇒=20cos 4.814.32152cos 2cos 2θπθπr S n r n S n =3.065圈3.2 齿轮齿条式转向系的角传动比转向系理论角传动比可用三维数模模拟的最大转角直接求出,当转向齿条行程152 mm 时,通过三维运动分析可以得出前轮最大转角外分别为:i δ=42.0°,Aa δ=35.5°。
则理论角传动比i :14.1320.42360065.32360=⨯⨯=⇒⨯=⇒==i n i d d i ikk w δβϕωω实际上,转向系在转向拉杆连接球头、转向器齿轮齿条啮合间隙以及万向传动轴、方向盘连接等转向系连接结构中存在转向行程损失。
由于LF7133转向系统基于标杆车进行设计,这里以标杆车计算所得转向行程损失ηwo =95.9%进行计算。
则转向系实际传动比70.13%9.9514.13===⇒⋅=wowo wo wo ii i i ηη 3.3 车轮实际最大转角已知转向系实际传动比以及方向盘圈数的情况下,则其最大转角为:︒=⨯︒⨯=⨯=⇒︒⨯=⇒==3.4070.132360065.323602360wo i iwo kk w wo i n n i d d i δδβϕωω最大外转角:%9.950.36K ⨯︒=⋅=-ηδδAa Aa =34.5°3.4 静态原地转向阻力矩静态原地转向阻力矩是汽车中最大极限转向所需力矩,比行驶中转向所需的力矩大2到3倍。
目前采用半经验公式计算p G fM r 313=22.04.772237.03==3.38×105 N ·mm 式中:M r : 在沥青或混凝土路面上的原地转向阻力矩,N ·mm ; f : 轮胎与地面间的滑动摩擦系数,一般取0.7; G 1 : 转向轴负荷,788.00×9.8=7722.4 N ; P :轮胎气压,0.22Mpa ;3.5 静态原地转向时作用于转向盘的力αηsin R i M F wo rh =式中: Mr :原地转向阻力矩,N ·mm ,M r =3.38×105 N ·mm ;F h :作用于转向盘的力;i wo :齿轮齿条式转向系的角传动比,i ow =13.70; R :方向盘半径 mm ,R =190mm ; α : 转向梯形底角 ( °),α=89.23°; η :转向器的效率,取η=75%。
即:23.89sin 190%7570.131038.3sin 5⨯⨯⨯⨯==αηR i M F wo r h =173.1 N 不带助力转向,汽车以10km/h 行驶时,作用在方向盘的手力不应超过245N ,Fh <245N ,所以此设计满足法规要求。
3.6 最小转弯半径的校核设定设计数据姿态处于空载情况下,通过上述模拟其外轮理论最大转角分别为:42.8°/36.0°,且左右转角相等,计算时采用该值为计算基础。
为计算最小转弯半径,根据对数模空载姿态下的测量,转向轮绕主销偏移距s r =0.004809m ,轴距L =2.55m 。
计算采取文献3推荐的一种计算方法校核最小转弯直径。
为保证车辆行驶转向的精确性,确保各车轮不发生侧滑,转向时通过4个车轮中心的车轮平面垂直线都相交于一点——转向中心M 。
如果后轮不转向,则2个前轮平面的垂线必须与后轮中心连线的延长线相交于M 点(如图2所示),从而使得在车身外侧的前轮上出现不同的转向角δi 和δAa 。
根据相对较大的侧车轮转向角δi 可以推算出外侧车轮的理论值,即所谓的阿克曼角。
. 1图2 转向原理图由文献3所载的经验公式可以计算出最小转弯直径:F s Aas r lD δαδ∆⨯-+⨯=)sin (2≈9.4 m式中:δAa : 外侧车轮推算理论转角值δAa =arc(cotδAa )= arc 1.649=31.25°; cotδAa :外侧车轮推算理论转角余切值l j i Aa /cot cot +=δδ=1.649 ;δi : 侧车轮理论最大转角值,δi = 42.8°; j : 为在地面测得的主销延长线与地面交点的距离j = b v - 2×r s =1.4494 ;r s : 主销偏移距,r s =0.004809 m ; b v : 为前轮距, b v = 1.459 m ; l : 汽车轴距, l = 2.550 m ; α : 经验因子, α = 0.1 m/°;ΔδF : 转向误差, ︒=︒-︒=-=∆75.4.251336.0F Aa a δδδ;由以上计算结果可以看出,其值与标杆车试验测量值(9.64m)相当接近,并且小于最小转弯直径值。
故此,LF7133转向系统各参数取值符合总布置对最小转弯直径的设计目标值9.64m 的要求。
4. 总结根据此报告的设计计算,此转向系统满足法规的要求,符合整车的设计需要,达到预期的目的。
但是其中很多数据为经验值,尚待装车做进一步优化。
其计算结果参数见表3所示。
5.参考文献1).惟信著.汽车设计.清华大学,20012).王望予.汽车设计.机械工业,20033).《汽车工程手册》编辑委员会.汽车工程手册:设计篇. 人民交通, 20014).GB 17675-1999:汽车转向系基本要求.中国标准,20015).GB 7258-2004:机动车运行安全技术条件.中国标准,2005。