当前位置:文档之家› 电动力学复习提纲及复习习题参考答案..

电动力学复习提纲及复习习题参考答案..

2011级电动力学复习提纲数学准备理解散度、旋度、梯度的意义,熟悉矢量的梯度、散度、旋度在直角、球、圆柱坐标系中的运算,以及散度定理(高斯定理)、旋度定理(斯托克斯定理)。

章后练习1、2。

第1章理解全章内容,会推导本章全部公式。

重点推导麦克斯韦方程组,以及用积分形式的麦克斯韦方程组推出边值关系。

章后练习1、2、5、9、10、12第2章能推导能量转化与守恒定律,并且能说明各物理量及定律的物理意义。

能认识电磁场动量及动量转化和守恒定律,并且能说明各物理量及定律的物理意义。

了解电磁场的角动量,理解电磁场有角动量且角动量转化和守恒的意义。

P35例题,书后练习2、3第3章理解静电场和静磁场的势函数,为什么可以提出,在求解静电磁场时有什么意义。

势的方程和边值关系及推导。

深入理解唯一性定理,能应用其解释电磁现象,比如静电屏蔽现象。

熟悉电磁能量势函数表达式及意义。

会独立完成P48例题1,,P55例1、例2,P57例5,。

练习1、3、6、7第4章掌握静像法、简单情形下的分离变量法;理解多极矩法,掌握电偶极矩的势、场,以及能量、受力等;知道电四极矩的表示,计算。

了解磁偶极矩的表示、能量。

熟悉超导的基本电磁性质及经典电磁理论的解释。

会独立熟练计算P62例题1、P64例2及相关讨论;P69例1、P72例3;P74例1、例2。

练习3、4、5、7、10、12第5章1、理解如何由麦克斯韦方程推导自由空间的波动方程,理解其意义。

2、能推出电场和磁场的定态方程(亥姆霍兹方程),熟练掌握自由空间平面电磁波表达式,并且能应用其证明平面电磁波性质;3、能推导反射、折射定律、费涅尔公式,并且能应用其讨论布儒斯特定律、半波损失等常见现象;4、理解全反射现象,知道什么情形下发生全反射,折射波表示,透射深度;5、熟悉电磁波在导体空间表达式,理解其物理意义、理解良导体条件及物理意义;能推导导体中电荷密度;知道导体内电场和磁场的关系;理解趋肤效应,计算趋肤深度;理想导体的边值关系;6、理解波导管中电磁波的求解过程和结果,知道结构。

能计算截止频率。

了解谐振腔中的电磁场解,理解且求解共振频率。

7、独立计算P103,P111,P120例1、P121的例2、例3。

练习5、7、8、9,10第6章1、熟悉并且理解时变电磁场的电磁势及与电磁场的关系;2、什么是规范变换和规范不变性,熟悉库仑规范和洛仑兹规范;3、熟悉达朗贝尔方程,理解什么是近区、感应区、辐射区及特点;了解多极展开方法的应用;理解什么是推迟势,物理意义和表达式;4、熟悉电偶极辐射的电磁场及性质特点、偶极辐射的功率特点。

5、独立完成练习2第7章1、了解狭义相对论的产生过程,对电磁学发展的意义;2、熟练掌握狭义相对论的原理;洛仑兹变换式、间隔的概念及表示;3、熟悉物理量按变换性质分类;理解如何得到协变物理量、判断物理规律的协变性、熟悉教材给出的四维物理量、洛伦兹变换矩阵;4、熟练掌握相对论的多普勒效应及特点;5、了解协变的电动力学规律;6、熟悉如何求解以匀速运动的带电粒子的势函数、电磁场及特点;7、独立完成P159例4、P162例1、P164例2,P165例3、例4,练习2、8,9,11,12第8章1、理解相对论的时空效应,能用洛仑兹变换式推出同时的相对性,长度收缩,动钟变慢,因果律及光速极限,并且能够应用计算;2、理解相对论的时空结构;熟悉速度变换式并且能应用计算;3、熟悉质能关系式并且理解怎么提出的,深入理解静能、动能的概念。

4、独立完成P171例1,P173例2,P177例3,P180例1,P181例2,P182例3. 练习1、2、5、7、8、10、11 第9章了解运动带电粒子的电磁场,什么时候能产生辐射;了解经典电动力学的适用范围。

注:1、课堂上的补充例题及课堂练习要求掌握;2、考题形式有填空22分,选择填空18分,证明10分,计算50分;3、总成绩100分,平时作业20%(包括作业和课堂练习),考勤10%,期末70%。

部分习题答案习题一(1、2、12自己证明)1.用静电场的高斯定理说明电力线总是从正电荷发出,止于负电荷,且静电场线不可能是闭合的。

2.用磁场的高斯定理说明磁力线总是闭合的。

5.试证明:在均匀介质内部,极化电荷密度P ρ与自由电荷密度ρ的关系为ρεερ⎪⎭⎫⎝⎛-=10P ,其中ε是介质的电容率. 证明:因为E D ε=,电容率ε与坐标无关,由P E D+=0ε,和f D ρ=⋅∇ ,得()()()fP D ED P ρεεεεερ/1/1000--=⋅∇--=-⋅-∇=⋅-∇=一般介质0εε>,因此P ρ与f ρ符号相反。

9.平行板电容器内有两层介质,它们的厚度分别为1l 和2l ,电容率为1ε和2ε.今在两极板间接上电动势为E 的电池,求⑴ 电容器两板上的自由电荷面密度; ⑵ 介质分界面上的自由电荷面密度.若分界面是漏电的,电导率分别为1σ和2σ,当电流达到恒定时,上述两问题的结果如何?解 (1)求两板上自由电荷面密度1f σ和2f σ,在介质绝缘情况下,电容器内不出现电流.22211122110D l D l l E l E V εε+=+= (1)边值关系为 σ=-⋅)(21D D n , (2)在两种绝缘介质的分界面上,没有自由电荷分布,03=f σ∴ 0)(12=-⋅D D n 12D D = (3)因为两极板中(导体中)电场为0,;在导体和介质的分界面2处有212)(f σ-=-⋅D D n得 22f D σ=-在另一导体与介质的分界面1处有f σ=-⋅-)(12D D n (4)f D σ==-⋅-11)(D n 联立解得221101εεσl l V f +=221102εεσl l V f +-=可见,整个电容器保持0321=++f f f σσσ(电中性)(2)当介质略为漏电,并达到稳恒时,要保持电流连续性条件成立0)(12=-⋅J J n 即 n n 21J J =21J J =在两介质界面上有自由电荷积累,此时21D D ≠,应有J J J ==21 ∴ J E E ==2211σσ∵ 极板的电导率远大于1σ和2σ,故极板中电场近似为0 ∴ )(22211122110σσf l f l l E l E V +=+=J )2(211σσl l +=∴ 22110σσl l J J +=211220σσσl l V E +=2112102σσσl l V E +=根据边值关系最后得出,各交界面上自由电荷面密度为21120211σσσεσl l V f +=, 21120122σσσεσl l V f +-= ,2112021123)(σσσεσεσl l V f +-=10.试用边值关系证明:在绝缘介质与导体的分界面上,在静电情况下,导体外的电场线总是垂直于导体表面;在恒定电流情况下,导体内电场线总是平行于导体表面.证明:因为 t t E E 21=,导体内(1)电场为0,所以导体外(2)电场的切向分量为0,电场线总是垂直于导体表面。

在恒定电流情况下,0=⋅∇J ,则有0=n J ,又由欧姆定律E Jσ= 故导体中0=n E ,所以电场仅有切向分量,电场线平行于导体表面。

12.用静电场的环路定理说明,电力线不可能是闭合曲线。

习题二2.内外半径分别为a 和b 的无限长圆柱形电容器,单位长度荷电为f λ,板间填充电导率为σ的非铁磁物质.⑴证明在介质中任何一点传导电流与位移电流严格抵消.因此内部无磁场.⑵求f λ随时间的衰减规律.⑶求与轴相距为r 的地方的能量耗散功率密度.⑷求长度为l 的一段介质总的能量耗散功率,并证明它等于这段的静电能减少率.解:⑴由高斯定理可得r f e r D ˆ2πλ= ,则.ˆ2r f e rD E πελε==由欧姆定律微分形式.ˆ2r ff e r E J πεσλσ== 而位移电流密度.ˆ21r fD e tr t D J ∂∂=∂∂=λπ ,对其两边求散度 又由f D ρ=⋅∇ ,0=∂∂+⋅∇tJ ff ρ 得f f tλεσλ-=∂∂,所以 0=∂∂+tDJ f 。

因为介质是非铁磁性的,即H Bμ=,故任意一点,任意时刻有000=⎪⎪⎭⎫⎝⎛∂∂+=⨯∇=⨯∇t D J H B fμμ⑵由f f tλεσλ-=∂∂,解这个微分方程得 ()tf et εσλλ-=0⑶功率密度()222/r E E J p ff πελσσ==⋅=⑷长度为l 的一段介质耗散的功率为.ln 222222a b l rldr r f baf πελσππελσ=⎪⎪⎭⎫⎝⎛⎰ 能量密度()22/,21r tw D E w f πελσ-=∂∂⋅=长度为l 的一段介质内能量减少率为.ln 2222ab l rldr t wf baπελσπ⎰=∂∂-3.一很长的直圆筒,半径为R ,表面上带有一层均匀电荷,电荷量的面密度为σ.在外力矩的作用下,从0=t 时刻开始,以匀角加速度α绕它的几何轴转动,如图所示.⑴试求筒内的磁感应强度B;⑵试求筒内接近内表面处的电场强度E和玻印廷矢量S ;⑶试证明:进入这圆筒长为l 一段的S 的通量为⎪⎪⎭⎫⎝⎛2022B l R dt d μπ..解:⑴单位面电流ωσσπR lTRl i ==2 ωσμμR ei B z 00ˆ== ⑵在圆筒的横截面内,以轴线为心,r 为半径作一圆,通过这圆面积的磁通量为ωσμπR r S d B s02=⋅=Φ⎰由法拉第定律,得 .21210dtd Rr dt d r E ωσμπ-=Φ-=因为 t αω=所以ασμrR E 021-= 考虑到方向,则有z r e erR E ˆˆ210⨯=ασμ 在筒内接近表面处,z r e eR E ˆˆ2120⨯=ασμ 该处的能流密度为()()z z r R R R e R e eR H E S ˆˆˆ2120ωσασμ⨯⨯=⨯= r et R ˆ212320ασμ-= 负号表明,S 垂直于筒表面指向筒内。

⑶进入这圆筒长为l 一段的S 的通量为lt R Rl S R s 24202ασπμπ=⋅=Φ而lt R dt dB B l R B l R dt d 2420022022ασπμμπμπ==⎪⎪⎭⎫ ⎝⎛ 所以⎪⎪⎭⎫⎝⎛=Φ2022B l R dt d S μπ 讨论:此结果表明,筒内磁场增加的能量等于S 流入的能量。

由于筒未转动时,筒内磁场为零,磁场能量为零,磁场能都是经过玻印廷矢量由表面输入的。

习题三1.试证明,在两种导电介质的分界面上,.01122=∂∂-∂∂n n ϕσϕσ ()21指向由n. 证明:因为0=⋅⎰⎰SS d j所以,n n j j 21= 又, nE j n n ∂∂==ϕσσ 即 .01122=∂∂-∂∂nn ϕσϕσ3. 试论证:在没有电荷的地方,电势既不能达到极大值,也不能达到极小值.(提示:分真空和均匀介质空间,用泊松方程证明.) 证明:由02ερϕ-=∇ (1) 没有电荷的地方0222222=∂∂+∂∂+∂∂z y x ϕϕϕ (2) 如果ϕ为极大,则022<∂∂x ϕ,022<∂∂yϕ,022<∂∂z ϕ,这不满足(2)式,可见没有电荷处,ϕ不能为极大。

相关主题