第12章 配位平衡
[Ni(CN)4]2- K稳 = 1×1021 不同类型
计算: [Ni(en)3]2+中[Ni2+] = 6.5×10-6
[Ni(CN)4]2- 中[Ni2+] = 1.3×10-5
所以,稳定性[Ni(en)3]2+ >[Ni(CN)4]2-
12—3—3 判断配合反应的方向
配合反应平衡的移动
L的浓度、溶液的酸度
①从平衡移动的角度来加入Cl-后,由于生成AgCl↓, 平衡向右移动,配合物离解。当Cl-足量时,配合物全 部离解(主要是K稳KSP = K不太大的情况)‘
②反应物NH3加入抑制了配合物的离解(同离子效应), 平衡向右移动的倾向大大减弱,[Ag+]大大降低,故没 有AgCl生成(用于K不太大的情况)
②Cu+、Ag+、Au+、Zn2+、Cd2+、Hg2+的配合物的稳定性 更高一些
③Cl-、Br-、I-:稳定性 Zn2+<Cd2+<Hg2+
④F-:稳定性 Zn2+>Cd2+>Hg2+
硬软酸碱理论
(3)metal ion for (18+2)e
解释
配合物的稳定性比8e构型要强, 比18e构型要差
(4) metal ion for (9~17)e
2、高价金属离子
例 Fe3+ + H2O Fe(OH)2+ 、Fe(OH)2+、 Fe(OH)3 pH ↑水解↑,配离子的稳定性降低
pH↓水解↓,配离子的稳定性增强
这种现象叫中心离子的水解效应 与配合剂的酸效应 效果正好相反。
3、酸度的改变有时也会改变配离子的类型
所以酸度对配合物的影响是复杂的,至于以哪种效 应为主,取决于HL的Ka,M(OH)3的KSP和配离子本 身的稳定性K稳。
Chapter 12 coordination equilibrium
12-1 stability constant of complex-ion
stability 氧化还原稳定性 热力学稳定性(主要)→水溶液是否离解的稳定性 →有很重要的实际意义
12-1-1、stability constant and unstability constant of complex-ion
对8电子构型金属离子: 配合物的稳定性与金属离子的离子势(Z/r)成正比
2、electron configuration of metal ion
(1)metal ion for 8e
配合物的稳定性与金属离子的离子势(Z/r)成正比。
(2)metal ion for 18e
①配合物的稳定性比8e构型要强
规律:一般K1>K2 >K3……(配体间的排斥) 12—2 影响配合物在溶液中的稳定性的因素
12—2—1 influence of structure and property of central atom to stability of complex ion 1、radius and charge of metal ion
[+] = x =
0.02 1.7×1070.962 = 1.28×10-9
可见AgNO3基本上转化为[Ag(NH3)2]+
12-3-2 比较不同配合物的稳定性
稳定性 [Cu(NH3)]4 > [En(NH3)4]2+
K稳 4.8×1012
2.9×109 相同类型
[Ni(en)3]2+ K稳 = 2.1×1018
分析,对这个题首先我们要求的是Ag+的浓度,若知 [Ag+],利用QSP([Ag+][Cl-])与KSP可知是否有AgCl 沉淀
解:第一种情况 设[Ag+] = X
Ag+ + 2NH3 = Ag(NH)
平衡 X 2X
0.1-X
则 (0.1-X) = 1.7×107 X·(2X)2
所以K值较大,X较小 0.1-X = 0.1
= 1.47×10-9 / 0.1 ×100% = 1.47×10-6 % 可见离解度大大降低了
其Qsp[Ag+][Cl-]=1.47×10-9×0.001=1.47×10-12<Ksp
故无AgCl沉淀生成
解释: [Ag(NH3)2]+ = 2NH3 + Ag+
NaCl
Na+ + Cl-
AgCl↓
Mm+ + nL- = [MLn](m-n)+ 其它配体
沉淀剂
氧化剂和还原剂
例 [Ag(NH3)2]+ + 2CN- = [Ag (CN)2]- +2NH3 根据多重平衡原理
K = K1·K2 = K[Ag (CN)2]- / K[Ag(NH3)2]+ = 1×1021 / 1.6×107 = 5.6×1013 正向
近似解为 X=1.14×10-3 mol·l-1
[Ag(NH)2]+的高解度 α= [Ag+]/[Ag(NH)2+]0=1.14×10-3/0.1×100% = 1.14% 解Qsp= [ Ag+] [Cl-]=1.14×10-6 〉Ksp,所以沉淀析出。 第二种情况 设[Ag+] = y
Ag+ + 2NH3 = Ag(NH) 平衡 y 2+2y 0.1-y 则 (0.1-y)/ y(2+2y) = 1.7×107 可预计y是很小的 0.1-y = 0.1 2+2y=2 解得 [ Ag+] = y=1.47×10-9 离解度 a = [Ag+]/[Ag(NH)2+]
sense: 这个常数越大,表示[Cu(NH3)4]2+配离子越易 解离(浓度越小),因此配离子越不稳定→不稳定常数 nonstability constant,用K不稳表示,它是每个配离子 的特征常数, K值越大,配离子越不稳定. 稳定性[Cu(NH3)4]2+>[Zn(NH3)4]2+>[Cd(NH3)4]2+ K不稳 2.08×10-13 7.00×10-9 2.75×10-7 将上述平衡换过来, 即为配合平衡, 平衡常数表达式为
根据广义酸碱的概念:配体是碱,H+是酸→酸碱加合物 HL(质子弱酸)→影响配合平衡
1、实验
Fe3+ SCN- 血红Fe(NCS)3 NaF FeF63- 无色 加酸 Fe(NCS)3 原因FeF63- + 6NCS- + 6H+ = Fe F63- + 6HF(弱酸)
从配体来看,酸度增大常导致配合物稳定性降低——配 合剂的酸效应。
六 、 relation between complexing and oxidationreduction reaction (point)
sense:常数越大,表示形成配离子的倾向越大,配离
子越稳定→稳定常数stability constant, 用K稳表示,也
是每个配离子的特征常数,很显然K稳与K不稳之间存在
如下关系, K稳 = 1 / K不稳
(参见P386表12-1)
12-1-2 逐级稳定常数
对于平衡 Cu2+ + 4NH3 = [Cu(NH3)4]2+ 实际上[Cu(NH3)4]2+配离子中,Cu2+离子并不是一下子 就与4个 NH3 分子配合而成,而是逐步配合成的,即 有下列一系列平衡:
前面已述,complex-ion在水溶液中是稳定存在的,如
Cu(NH3)42+ 少量NaOH, 无Cu(OH)2↓蓝 Ksp = 2.2×10-22 那么是不是溶液中一点Cu2+离子都没有泥?
Cu(NH3) 少量Na2S 有CuS↓蓝 Ksp = 6.0×10-36 Cu2+离子是哪儿来的呢?是[Cu(NH3)4]2+配离子微弱电离 而来,
特点:d轨道上的d电子未充满
①生成配离子的能力很强
②d电子较少时,配合物以静电作用力为主
③d电子较多时,配合物的共价性提高
12-2-2 influence of ligand to stability of complex ion property of ligand:acidity-basicity、chelating effect、 space effect 1、chelating effect:多齿配体的成环作用使配合物的稳 定性比 组成和结构相近的非螯合物高的多,这种现象 叫做螯合效应。如:[Ni(NH3)6]2+ lgK=8.61
酸度对配离子生成的影响 (6)calculating electrode potential of electrical pair consisting of a metal ion surrounded by ligands
计算金属离子与配离子构成电对的电极电势
12—3—1 solubility——求平衡时各物种(离子or分子) 的浓度
若[Ag+][I-]=1.47×10-12>Ksp=9.3×10-13
结论:加大过量的配位剂,中心离子配位完全。而 将原溶液稀释or加入沉淀剂会减弱配离子的稳定性
K稳↑ KSP↑ 沉淀溶解,配离子稳定 K稳↓ KSP↓ 沉淀生成,配离子分解
五、 influence of the acidity to complex equilibrium
(2)comparing stability of different complex 比较不同配合物的稳定性
(3)judging degree and direction of coordination reaction 判断配合反应进行的