当前位置:文档之家› 静注人免疫球蛋白ph4

静注人免疫球蛋白ph4

静注人免疫球蛋白ph4
具有抗体活性的动物蛋白,是由淋巴细胞(B细胞)产生的一种糖蛋白。

主要存在于血浆中,也见于其他体液、组织和一些分泌液中。

人血浆内的免疫球蛋白大多数存在于丙种球蛋白(γ-球蛋白)中。

可分为五类,即免疫球蛋白G(IgG)、免疫球蛋白A(IgA)、免疫球蛋白M(IgM)、免疫球蛋白D(IgD)和免疫球蛋白E(IgE),IgG,IgA和IgM还有亚类。

IgG,IgD,IgE均为单体,分泌液中IgA(SIgA)是双体,IgM 是五聚体。

其中IgG是最主要的免疫球蛋白,约占人血浆丙种球蛋白的70%,分子量约15万,含糖2~3%。

尽管免疫球蛋白千变万化,但都有类似的结构。

抗体分子是由两对长短不同的多肽链所组成,四条链通过链间二硫键构成Y型基本结构(H2L2)。

IgG分子由4条肽链组成。

其中分子量为2.5万(23kD)的肽链,称轻链(L链),分子量为5万的肽链(50~60kD),称重链(H链)。

轻链与重链之间通过二硫键(—S—S—)相连接。

H和L链上都有可变区,同类重链和同型轻链的近N端约110个氨基酸序列的变化很大,其他部分的氨基酸序列相对恒定,据此可将轻链和重链区分为可变区(V)和恒定区(C)。

VH和VI。

各有3个区域的氨基酸组成和排列顺序高度变化,称为高变区(HVR)或互补决定区(CDR),分别为CDRl、CDR2和CDR3。

CDR以外区域的氨基酸组成和排列顺序相对不易变化,称为骨架区(FR)。

VH和VI。

各有113和107个氨基酸残基,组成4个FR(分别为FRl、FR2、FR3和FR4)和3个CDRs。

VH和VI-中的各氨基酸可编号,一些保守的氨基酸都有其固定的编号位置,将不同序列和已编号的序列进行对比以后,在某个位置上多出来氨基酸编号为A、B、C等,如27A、27B、27C、106A等。

VH和VL的3个CDR共同组成Ig的抗原结合部位,识别及结合抗原,并决定抗体识别的特异性。

免疫球蛋白轻、重链可变区氨基酸顺序的编号
重链和轻链的C区分别称为CH和CL,不同型别(x或入)CI。

的长度基本一致.但不同类别IgCH的长度不一,有的包括CHl~CH3,有的为CHl~CH4。

同一种属生物体内针对不同抗原的同一类别Ig的C 区氨基酸组成和排列顺序比较恒定,其抗原性是相同的,但V区各有不同。

C区与抗体的效应功能相关,可激活补体,介导穿过胎盘和黏膜屏障,结合细胞表面的Fc受体从而介导调理作用、ADCC作用和I型超敏反应。

在Ig分子伸出的两臂和主干之间(CHl与CH2之间)还有个可弯曲的区域,称为铰链区。

该区含有丰富的脯氨酸,因此易伸展弯曲,能改变两个结合抗原的Y形臂之间的距离,两臂之间的角度可自0到90变化,这样有利于两臂同时结合两个不同的抗原表位。

虽然IgD、IgG、IgA有绞链区,而IgM和IgE没有,但这并不说明它们完全不能弯曲,实际上还有相对的弯曲性。

各类抗体的铰链区的长度及氨基酸的顺序也有不同;人IgD的可伸展的距离最大,IgG4和两种IgA的弯曲度则有限。

所有的抗体是Ig,但Ig并不都是抗体。

Ig的两个重要特征是特异性和多样性。

它们是机体受抗原(如病原体)刺激后产生的,其主要作用是与抗原起免疫反应,生成抗原-抗体复合物,从而阻断病原体对机体的危害,使病原体失去致病作用。

另一方面,免疫球蛋白有时也有致病作用。

临床上的过敏症状如花粉引起的支气管痉挛,青霉素导致全身过敏反应,皮肤荨麻疹(俗称风疹块)等都是由免疫球蛋白制剂能增强人体抗病毒的能力,可作药用。

如注射人血清或人胎盘中提取的丙种球蛋白制剂可防治麻疹、传染性肝炎等传染病。

Ig是一个多藣有分子:(1)可结合抗原;(2)可作为抗原诱发抗体的产生;(3)可激发一系列如补体激活、吞吐噬调理、信号传导等次级反应。

各种特异性Ig已被广泛应用于临床疾病的预防、治疗和诊断。

例如,IgM是体液免疫应答首先产生的Ig。

SIgA是机体黏膜防御感染的重要因素。

IgE是同速发型过敏反应发生有关的Ig。

IgD以膜结合形式存在于B细胞,在B细胞分化发育中起重调节有作用。

[编辑本段]注射免疫球蛋白不是万能的
首先,丙种球蛋白注入人体后产生的免疫力是被动给予的,不是自身主动产生的,一般2周就被排泄,之后体内丙种球蛋白的含量又恢复到原来水平,要长期保持体内所含丙种球蛋白的高水平,就必须每隔2周注射1次。

其次,应用丙种球蛋白有一定的适应症,因为该药随所含抗体量的不同而预防效果各异。

普通的丙种球蛋白主要用于预防麻疹、甲肝、流行性腮腺炎等,想用丙种球蛋白来预防各种疾病是不可能的。

第三,如果反复注射丙种球蛋白,因其本身可作为抗原,刺激人体产生一种对抗丙种球蛋白的抗体,即抗抗体,一旦再注射丙种球蛋白,就会被抗抗中和,不能发挥其抗病作用。

第四,人体自身能够合成丙种球蛋白,如经常使用外来药品,就会抑制自身抗体的产生,从而降低机体的抗病能力。

第五,由于丙种球蛋白是血液制品,万一在来源上把关不严,反而造成血源污染,使健康人体传染上疾病,况且对人体来说,外来的丙种球蛋白毕竟是“异物”,个别人注射后可能会引起过敏反应。

因此,把丙种球蛋白作为强化剂、补药来使用是没有科学根据的,想通过反复注射该药来长期预防疾病、增强体质也是不可能的。

[编辑本段]免疫球蛋白的结构
Ig 分子的基本结构是由四肽链组成的,即由二条相同的分子量较小的轻链(L 链)和二条相同的分子量较大的重链(H 链)组成的。

L链与H链是由二硫键连接形成一个四肽链分子,称为Ig分子的单体,是构成免疫球蛋白分子的基本结构。

现已知5 种免疫球蛋白中IgG、IgA 和IgD的H链各有一个可变区(VH)和三个恒定区(CH1、CH2 和CH3)共四个功能区。

IgM和IgE 的H链各有一个可变区(VH)和四个恒定区(CHl、CH2、CH3 和CH4)共五个功能区。

VL和VH 是与抗原结合的部位,单体由一对L链和一对H链组成的基本结构,只有2 个与抗原结合的位点,如IgG、IgD、IgE、血清型IgA;双体由J链连接的两个单体,有4 个与抗原结合的位点,如分泌型IgA(SIgA),所以SigA 结合抗原的亲合力要比血清型IgA 高。

五聚体由J 链和二硫键连接五个单体,如IgM。

五聚体IgM 理论上应为10 个与抗原结合的位点,但实际上由于立体构型的空间位阻,—般只有5 个结合点可。

相关主题