十八项反措条文解读条文5.1.1.8 在新建、扩建和技改工程中,应按《电力工程直流系统设计技术规程》(DL/T 5044)和《电力装置安装工程蓄电池施工及验收规范》(GB 50172)的要求进行交接验收工作。
所有已运行的直流电源装置、蓄电池、充电装置、微机监控器和直流系统绝缘监测装置都应按《电力系统用蓄电池直流电源装置运行与维护技术规程》(DL/T 724)和《电力用高频开关整流模块》(DL/T 781)的要求进行维护、管理。
变电站的直流系统在交接试验验收、运行、维护管理过程中要严格按照国家、电力行业标准的有关要求进行。
如对充电、浮充电装置在交接、验收时,要严格按照《电力工程直流系统设计技术规程》(DL/T 5044)中有关稳压精度0.5%,稳流精度1%,纹波系数不大于0.5%的要求进行。
交接验收时,查验制造厂所提供的充电、浮充电装置的出厂试验报告。
现场具备条件的话,要对充电、浮充电装置进行现场验收试验,测试设备的稳压、稳流、纹波系数等指标,有关出厂试验报告、交接试验报告作为技术档案保存好,并作为今后预试的原始依据。
有的制造厂的出厂测试报告只提供高频模块的测试报告,未提供充电、浮充电装置的整机测试报告,造成现场检测整机稳压精度与出厂测试数据严重不符。
对于蓄电池组,在交接时,应按标准要求进行10小时放电率放电电流,100%容量的核对性充、放电试验。
试验时,先对蓄电池组进行补充充电,以补充蓄电池组在运输、现场安装、静置过程中自放电所损失的容量。
一次放、充电的试验结果,容量测试不小于额定容量的90%,就可以认为容量达到要求。
测试时,一定要测记蓄电池组安装位置的环境温度,实测容量要进行25℃标准温度下的容量核算。
C25℃= C T/(1+k(T-25))式中:T-放电时的环境温度C T-温度T时的放电容量k-温度系数,10小时放电率时k=0.006/℃3小时放电率时k=0.008/℃1小时放电率时k=0.01/℃条文5.1.1.9 变电站直流系统配置应充分考虑设备检修时的冗余,330kV及以上电压等级变电站及重要的220kV变电站应采用三台充电、浮充电装置,两组蓄电池组的供电方式。
每组蓄电池和充电机应分别接于一段直流母线上,第三台充电装置(备用充电装置)可在两段母线之间切换,任一工作充电装置退出运行时,手动投入第三台充电装置。
变电站直流电源供电质量应满足微机保护运行要求。
由于高电压等级变电站在电网的重要性,因此应考虑设备检修时的冗余性。
如果采用“2+2”的模式配置充电机,当一台设备退出运行时,一般都采用一台充电、浮充电装置和一组蓄电池组带两段直流母线运行,因为现在重要设备的继电保护装置,都采用双重化方式,如果“1+1”的直流母线运行方式,双重化保护的电源只是单一的,其可靠性大大降低了。
另外,虽然现在高频开关电源都是N+1运行方式,但充电、浮充电装置的监控器却仅有一套,监控器故障时,充电、浮充电装置的许多功能都不能实现了。
据统计,近三年,公司每年直流设备故障中,监控器的故障占50%以上。
条文5.1.1.10 变电站直流系统的馈出网络应采用辐射状供电方式,严禁采用环状供电方式。
环状供电方式是指将两个独立的直流供电系统在其下一级直流支路中连接,当分支直流元件故障时,非故障母线将断开供电回路,这样扩大了直流故障范围。
严重时会使整个变电所处于无直流状态下,对系统正常运行造成重大的安全威胁。
条文 5.1.1.11 直流系统对负载供电,应按电压等级设置分电屏供电方式,不应采用直流小母线供电方式。
直流系统的馈出接线方式应采用辐射状供电方式,以保障上、下级开关的级差配合,提高了直流系统供电可靠性。
对于具体对负荷供电方式,例如继电保,护室内负荷,应按一次设备的电压等级配置分电屏,如500kV/220kV等级,或330kV/110kV等级,分别高/低电压,馈出屏接各自分电屏,再接负荷屏。
保护屏机顶小母线的供电方式应淘汰。
这样接线的优点,如果负荷处电源开关下口出现故障,仅跳负荷断路器,或者最多跳分屏对这一路输出的断路器,避免了直流小母线负荷断路器下口故障,由于小母线总进线断路器,很难实现与下级负荷断路器的级差配合而误动,造成停电范围扩大。
另外由于直流小母线往往在保护柜顶布置,接线复杂,连接点多,其裸露部分易造成误碰或接地故障。
[案例1] 某300MW发变组主保护A、B、C三套,设计时以小母线供电方式,A保护装置供电直流电源断路器下口出现短路故障,造成直流小母线进线断路器误动,使这三套保护装置全部失电。
35kV、10kV开关柜现有采用直流小母线方式供电,应改造为分电屏供电方式,以避免由于当负荷开关下口故障,造成小母线总进线开关无法应对级差配合而误动,扩大停电范围。
环状供电方式,对稳定运行危害很大,尤其当两段母线都出现接地时,很容易由于接地环流的影响,造成用电重要设备如开关误动。
[案例2] 某220kV变电站的220kV母线联络断路器,由于直流母线接地环流影响,造成该开关多次误动。
条文5.1.1.12 直流母线采用单母线供电时,应采用不同位置的直流开关,分别带控制用负荷和保护用负荷。
本条文主要根据继电保护有关“控保分开”对直流电源的要求,即要求继电保护装置的控制负荷和保护负荷的电源要分别独立进线。
案例:甘肃电力“6.18”停电事件条文5.1.1.13 新建或改造的变电站选用充电、浮充电装置,应满足稳压精度优于0.5%、稳流精度优于1%、输出电压纹波系数不大于0.5%的技术要求。
在用的充电、浮充电装置如不满足上述要求,应逐步更换。
本条文是按照《电力工程直流系统设计技术规程》(DL/T 5044)中有关要求而提出的。
条文5.1.1.14 新、扩建或改造的变电站直流系统用断路器应采用具有自动脱扣功能的直流断路器,严禁使用普通交流断路器。
加强直流断路器上、下级之间的级差配合的运行维护管理。
条文5.1.1.15 除蓄电池组出口总熔断器以外,逐步将现有运行的熔断器更换为直流专用断路器。
当直流断路器与蓄电池组出口总熔断器配合时,应考虑动作特性的不同,对级差做适当调整。
直流专用断路器在断开回路时,其灭弧室能产生一与电流方向垂直的横向磁场(容量较小的直流断路器可外加一辅助永久磁铁,产生一横向磁场),将直流电弧拉断。
普通交流断路器应用在直流回路中,存在很大的危险性,普通交流断路器在断开回路中,不能遮断直流电流,包括正常负荷电流和故障电流。
这主要是由于普通交流断路器,其灭弧机理是靠交流电流自然过零而灭弧的,而直流电流没有自然过零过程,因此,普通交流断路器不能熄灭直流电流电弧。
当普通交流断路器遮断不了直流负荷电流时,容易使断路器烧损,当遮断不了故障电流时,会使电缆和蓄电池组着火,引起火灾。
加强直流断路器的上、下级的级差配合管理,目的是保证当一路直流馈出线出现故障时,不会造成越级跳闸情况。
变电站直流系统馈出屏、分电屏、负荷所用直流断路器的特性、质量一定要满足《家用及类似场所用过流保护断路器第2部分:用于交流和直流的断路器》(GB 10963.2-2008)的相关要求。
继电保护装置电源,开关柜上、现场机构箱内的直流储能电动机、直流加热器等设备用断路器,建议采用B型开关,分电屏对负荷回路的断路器,建议采用C型开关,两个断路器额定电流有4级左右的级差,根据实测的统计试验数据结果,就能保证可靠的级差配合。
条文5.1.1.16 直流系统的电缆应采用阻燃电缆,两组蓄电池的电缆应分别铺设在各自独立的通道内,尽量避免与交流电缆并排铺设,在穿越电缆竖井时,两组蓄电池电缆应加穿金属套管。
由于直流电缆着火后,可能会造成全站直流电源消失情况,从而导致全站停电事故,本条文主要是针对直流电缆防火而提出的电缆选型、电缆铺设方面具体要求。
[案例] 2003年4月16日,某电厂500kV升压站,一段0.4kV交流电缆阴燃由于直流系统馈出的两根主电缆在电缆沟里与阴燃电缆混装,没有隔离措施,全部烧损,使全站失去直流电源,500kV两条输电线路失去继电保护,被迫跳开。
4台发电机退出运行。
条文5.1.1.17 及时消除直流系统接地缺陷,同一直流母线段,当出现同时两点接地时,应立即采取措施消除,避免由于直流同一母线两点接地,造成继电保护或开关误动故障。
当出现直流系统一点接地时,应及时消除。
[案例] 某220kV重要负荷站,220kV母线带180MVA和120MVA主变压器各1台,2010年11月某日,220kV进线断路器非全相跳闸,继电保护没有任何动作信号记录,后非全相保护动作,跳开断路器。
经查,一继电保护柜中一根直流电缆出现两点接地。
造成环流流过中间继电器线圈,造成保护误动。
当时IV母线负荷100MW。
这次两点接地现象早已存在,没有引起重视。
条文5.1.1.18 严防交流窜入直流故障出现条文5.1.1.18.1 雨季前,加强现场端子箱、机构箱封堵措施的巡视,及时消除封堵不严和封堵设施脱落缺陷。
现场端子箱、机构箱漏水可能会导致端子排绝缘降低,端子间短路情况,从而导致操作机构误动作情况和交流窜入直流故障的发生。
[案例] 2011年8月19日,某供电局一座330kV变电站因雨水进入断路器操作机构箱,引起220V交流电源串入直流系统,致使主变压器断路器操作屏中非电量出口中间继电器节点受电动力影响持续抖动,引起断路器跳闸,造成330kV朱家变电站2台主变压器及110kV 母线失压,15座110kV变电站全停,减供负荷147GW,停电用户数44008户。
本案例详细过程:2011年8月19日陕西省延安330kV朱家变电站主变压器跳闸(国网通报)。
陕西省延安330kV朱家变两台主变高压侧断路器相继跳闸,110kV母线失压,导致其馈供的15座110kV变电站失压。
导致事故发生的主要原因是:330kV朱家变110kV家子I间隔断路器支柱瓷瓶下法兰底面和底架(传动箱上表面)间仅采用现场安装时涂抹的密封胶作为防水密封,在开关操作震动作用下,中相密封胶硬化开裂。
事故前该地区连日大雨,雨水通过缝隙漏入传动箱后沿密度继电器电缆流入机构箱并滴入箱内温湿度控制器(该控制器电源部分为220V交流,信号部分为220V直流),造成温湿度控制器中交、直流回路间短路,交流电压串入直流I段,造成接于直流I段的两台变压器非电量出口中间继电器(主跳)接点抖动并相继出口跳闸。
条文5.1.1.18.2 现场端子箱不应交、直流混装,现场机构箱内应避免交、直流接线出现在同一段或串端子排上。
交、直流电源端子中间没有隔离措施,混合使用,容易造成检修、试验人员由于操作失误导致交直流短接,导致交流电源混入直流系统,进而发生发电机组、升压站线路继电保护动作,导致全厂停电事故,因此,电源端子的设计方式,交、直流电源端子应在端子排的不同区域,应具有明显的区分标志,电源端子之间要有隔离。