SDH数字微波通信系统摘要:SDH数字微波通信是新一代的数字微波传输体制。
它兼有SDH数字通信和微波通信两者的优点,本文简单介绍了SDH的速率和帧结构,阐明了SDH数字微波传输设备采用的关键技术以及SDH数字微波通信系统的组成。
关键字:SDH 微波通信数字ABSTRACT:SDH digital microwave communication is the new generation of digital microwave transmission system. It both SDH digital communications and microwave communication advantage of the two, this article simply introduces the rate and frame structure SDH, expounds SDH digital microwave transmission equipment the key technologies used and SDH digital microwave communication system composition.Keywords:SDH digital microwave communication1.SDH简介SDH是新一代的数字传输体制。
SDH有全世界统一的数字信号和帧结构标准,它把北美、日本和欧洲、中国流行的两大准同步数字体系(三个地区性标准)在STM—l等级上获得统一第一次实现了数字传输体制上的世界睦标准,因采用了同步复用方式和灵活的复用映射结构,避免对整个高速复用信号分解,达到一步复用特性,使上、下业务十分容易,也大大简化了数字交叉连接设备(DXC);SDH帧结构中安排了丰富的开销比特,大大加强了网络的运行管理和维护能力;不同厂家的产品可以互通,降低了联网成本。
毫无疑问,传输网的发展方向应该是高度灵活和规范化的SDH网。
SDH不仅可以应用于光纤通信系统中,而且还可以运用于微波通信系统之中,从而可以建立一个全新的SDH数字微波通信网络。
1、SDH的比特速率同步数字体系最基本的模块信号(即同步传送模块)是STM—l,其比特速率为155.520Mbit /s,更高级的STM-N信号可以按字节同步复接获得,其fbN=(155.520*N)Mbit/s,目前SDH只能支持一定的N值,即N为l、4、16、64等。
S rM—l l55.520Mbit/sSTM-4 622.080Mbit/ssTM一16 2488.320Mbit/sSTM一64 9953.280Mbit/s2、s1M一1的帧结构STM—l的帧结构为净负荷区域、段开销区域和管理单元指针区域组成。
以矩阵结构表达,共为9行270列(字节),帧长125us。
SOH较为复杂,已经包含了定帧信息、公务、段误码监测、自动备用倒换、段数据通信等信息。
2.SDH微波通信系统的组成数字微波传输线路的组成形式可以是一条主干线,中间有若干分支,也可以是一个枢纽站向若干方向分支。
一条数字微波通信线路,其主干线可长达几千公里,另有若干条支线线路,除了线路两端的终端站外,还有大量中继站和分路站,构成一条数字微波中继通信线路。
用户终端,直接为用户所使用的终端设备,如自动电话机、电传机、计算机、调度电话等。
向若干方向辐射的枢纽站,就其每一个方向来说一也是一个终端站。
SDH微波终端站的发送端完成主信号的发信基带处理(包括CMI/NRZ变换、SDH开销的插入与提取,微波帧开销的插入及旁路业务的提取等)、调制(包括纠错编码、扰码及发信差分编码等)、发信混频及发信功率放大等,终端站的收信端完成主信号的低噪声接收(根据需要可含分集接收及分集合成)、解调(含中频频域均衡、基带或中频时域均衡、收信差分译码、解扰码、纠错译码等)收信基带处理(含旁路业务的提取、微波帧开销的插入与提取石DH开销的插入与提取、NRZ /CMI变换等)。
在公务联络方面,终端站具有全线公务和选站公务两种能力。
在网络管理方面,终端站可以通过软件设定为网管主站或主站,收集各站汇报过来的信息,监视线路运行质量,执行网管系统配置管理及遥控、遥测指令,需要时还可通过Q3接口与电信管理(TMN)连接。
终端站基带接口与SDH复用设备连接,用于上、下低价支路信号。
终端站还具有备用倒换功能,包括倒换基准的识别,倒换指令的发送与接收,倒换动作的启动与证实等。
可作为监控系统的集中监视站或主站。
交换机。
这是用于功能单元、信道或电路的暂时组合以保证所需通信动作的设备,用户可通过交换机进行呼叫连接,建立暂时的通信信道或电路。
这种交换可以是模拟交换,也可以是数字交换。
目前,大容量干线绝大部分采用数字程控交换机。
数字电话终端复用设备(即数字终端机)。
其基本功能是把来自交换机的多路信号变换为时分多路数字信号,送往数字微波传输信道,以及把数字微波传输信道收到的时分多路数字信号反变换为交换机所需的信号,送至交换机。
对于PDH系统,一般采用编码调制数字电话终端机,它还包括二次群和高次群复接器、保密机及其他数字接口设备,按工作性质不同,它可以组成数字终端或数字分路终端机。
而对于SDH系统,则采用SDH数字复用设备,简称SDH设备,它由一些基本功能块灵活地组成不同类型的总的设备。
图中的数字分路终端机可由分插复用器(ADM)来替代。
微波站。
按工作性质不同,它可分成数字微波终端站、数字微波中继站和数字微波分路站。
有两个以上方向的上,下话路的微波站则称之为数字微波枢纽站。
SDH微波终端站的发送端完成主信号的发信基带处理(包括CMI/NRZ变换、SDH开销的插入与提取,微波帧开销的插入及旁路业务的提取等)、调制(包括纠错编码、扰码及发信差分编码等)、发信混频及发信功率放大等;终端站的收信端完成主信号的低噪声接收(根据需要可含分集接收及分集合成)、解调(含中频频域均衡、基带或中频时域均衡、收信差分译码、解扰码、纠错译码等)、收信基带处理(含旁路业务的提取、微波帧开销的插入与提取石DH开销的插入与提取、NRZ/CMI变换等)。
在公务联络方面,终端站具有全线公务和选站公务两种能力。
在网络管理方面,终端站可以通过软件设定为网管主站或主站,收集各站汇报过来的信息,监视线路运行质量,执行网管系统配置管理及遥控、遥测指令,需要时还可通过Q3接口与电信管理网(TMN)连接。
终端站基带接口与SDH复用设备连接,用于上、下低价支路信号。
终端站还具有备用倒换功能,包括倒换基准的识别,倒换指令的发送与接收,倒换动作的启动与证实等。
SDH微波中继站。
主要完成信号的双向接收和转发。
有调制、解调设备的中继站,称再生中继站。
需要上、下话路的中继站称微波分路站,它必须与SDH的分插复用设备连接。
再生中继站具有全线公务联络能力,以及向网管系统汇报站信息。
线路运行质量的能力,并可执行网管系统的配置管理及进行遥控及遥测。
再生中继站也可以上、下旁路业务信号。
3.SDH数字微波传输设备采用的关键技术1、微波帧复用技术在光纤通信系统中是采用SDH帧结构来传输数字流的,而在数字微波传输系统中,为了传输数字公务信息、旁路业务信号等,贝需要在SDH复用帧结构的基础上插入一些辅助比特,因而需要在数字微波传输系统的收、发信端分别增加分、复接器,使得微波帧复用技术更为复杂。
在不同的微波通信系统中可以使用不同的微波帧结构,微波帧结构与SDH同步传输模块的速率、所插入的微波帧开销比特速率以及调制方式等因素有关。
2、编码调制技术我国在4~11GHz频段大多采用ITU—R建议的28~30MHz和40MHz的波道间隔配置,要在有限的频带内传送尽可能高的比特率,最有效的办法就是采用高性能高速多状态调制解调技术。
因SDH传送方式的特点而决定了在传送相同话路或相同的2Mbit/s接口数的传输方式中,SDH微波所需占用的比特率要比PDH微波所需占用的比特率高l1%~2O%。
SDH 微波与PDH微波在相同的波道间隔下,其所需调制状态数的区别。
3.交叉极化干扰抵消(XPIc)技术为了进一步增加数字微波系统的容量,提高频谱利用率,有两种方法可以实现。
一种方法是采用512QAM或1024QAM调制方式。
但因调制状态数多,对电路的线性要求高,元器件的性能敏感,对多径衰落的影响也很84 中国电子商务1.2010.06严重,故技术难度大。
在数字微波系统中除了采用多状态调制技术(64QAM,128QAM或512QAM调制)外,还采用双极化频率复用技术,在每个波道中同时用垂直与水平两种极化各传一个155.52Mbit/S 的SDH微波信息,使单波道数据传输速率成倍增长。
但在出现多径衰落时,交叉极化鉴别率(xPD)会降低,从而产生交叉极化干扰。
为此,需要一个交叉极化抵消器,用以减小来自正交极化信号的干扰。
自适应交叉极化干扰抵消技术的基本原理是从所传输信号相正交的干扰信道中取出部分信号,经过适当处理后与有用信号相加,用以抵消叠加在有用信号上的来自正交极化信号的干扰。
原则上干扰抵消过程可以在射频、中频或基带上进行。
采用XPIC 技术后,对干扰的抑制能力一般可达15dB左右。
4。
前向纠错技术为避免一般的FEC技术导致的牺牲频带利用的现象发生,采用了一种新技术,即把调制和纠错编码结合起来统一设计的编码调制技术。
常见的有块状编码调制(BCM)、格状编码调制(TCM)和多级编码调制(MLCM)等三种。
其中BCM是各级用块状码进行调制。
与TCM相比,设备比较简单,但编码增益较低;TCM是各级都用一种卷积码,如4D—TcM是一种四维格状编码、维特比译码的纠错方式。
与其他方式相比,其编码增益最高,但不能传送2Mbit /S的路旁业务,MLCM 方式可以利用微波帧开销(RFCOH)增加2Mbit/S的路旁业务,其编码增益比TCM稍高,并因译码操作在低速进行,故结构简单。
可见,MLGM方式是一种较好的纠错方式,其次是4DTCM方式。
5.自适应频域和时域均衡技术当系统采用多状态QAM调制方式时,要达到ITU—R所规定的性能指标,对多径衰落必须采取相应的对抗措施。
考虑到ITu—R的新建议将不再给数字微波系统提供额外的差错性能配额,因此,必须采取强有力的抗衰落措施。
在各种抗衰落技术中,除了分集接收技术外,最常用的技术是自适应均衡技术,包括自适应频域均衡技术和自适应时域均衡技术。
频域均衡主要用于减少频率选择性衰落的影响,即利用中频通道插入的补偿网络的频率杼l生去补偿实际信道频率特性的畸变,时域自适应均衡用于消除各种形式的码间干扰,可用于最小相位和非最小相位衰落,为消除正交干扰,可引进二维时域均衡器。