当前位置:文档之家› 710KW给水泵高压变频器技术协议

710KW给水泵高压变频器技术协议

710KW水泵高压变频装置采购项目

技术协议

买方:

卖方:

时间:年月日

710KW水泵高压变频器技术协议

甲方:

乙方:

鉴于甲乙双方就710KW水泵高压变频装置采购项目所用的高压变频调速系统项目进行合作,现就技术、设备、服务等方面达成以下协议。

一、技术规范与标准

1.变频装置与电动机的基本连接方式:

本项目中的变频调速采用单元机组一拖一手动旁路方式配置。即单机配备一台高压变频器,通过切换高压隔离开关把高压变频器切换到工频电源上去。系统原理如下图所示:

手动旁路柜主要由3个高压隔离开关组成,为了确保不向变频器输出端反送电,QS21与QS22采用一个双刀双掷隔离开关,实现自然机械互锁。当QS1、QS22闭合,QS21断开时,电机变频运行;当QS1、QS22断开,QS21闭合时,电机工频运行,此时变频器从高压中隔离出来,便于检修、维护和调试。

旁路柜与上级高压断路器QF连锁,旁路柜隔离开关未合到位时,不允许QF合闸,QF 合闸时,绝对不允许操作隔离开关,以防止出现拉弧现象,确保操作人员和设备的安全。

合闸闭锁:将变频器“合闸允许”信号与旁路柜“工频投入”信号并联后,串联于高压开关合闸回路。在变频投入状态下,变频器故障或不就绪时,上级高压开关(断路器QF)合闸不允许;旁路投入状态时,合闸闭锁无效。

故障分闸:将变频器“高压分断”信号与旁路柜“变频投入”信号串联后,并联于高压

开关分闸回路。在变频投入状态下,当变频器出现故障时,分断变频器高压输入;旁路投入状态下,变频器故障分闸无效。

2、供货范围

这套高压变频成套装置,主要包括:进线变压器、功率柜、控制柜、旁路柜。

设备供货清单

3、变频系统技术参数:

4、变频器与现场外围控制接口

1).变频器提供的开关量输出6路:

(1)变频器待机状态指示:表示变频器已待命,具备启动条件。

(2)变频器运行状态指示:表示变频器正在运行。

(3)变频器控制状态指示:节点闭合表示变频器控制权为现场运程控制:节点断开表示变频器控制权为本地变频器控制。

(4)变频器轻故障指示:表示变频器产生报警信号。

(5)变频器重故障指示:表示变频器发生重故障,立即关断输出切断高压。

(6)电机在工频旁路:表示电动机处于工频旁路状态。

以上所有数字量采用无源接点输出,定义为接点闭合时有效。除特别注明外,接点容量均为AC200V、0.5ADC24V,1A.

2)变频器提供的模拟量输出4路:

(1)变频器输出转速两路

(2)变频器输出电流两路

变频器提供4路4~20MADC的电流输出(变频器供电),带负载能力均为250欧姆。3)需要提供给变频器的模拟量输入1路:(满足PID闭环控制)

(1)变频器转速给定值

现场提供1路4~20MADC的电流源输出,带载能力必须大于250 ,4~20MADC对应转速低高限,须呈线性关系。

4)需要提供给变频器的开关量输入如下:

(1)启动指令:干接点,3秒脉冲闭合时有效,变频器开始运行。

(2)停机指令:干接点:3秒脉冲闭合时有效,变频器正常停机。

(3)变频器多段速指令4路:干接点,3秒脉冲闭合时有效,用于变频器调速。

(4)提供给变频器一路“模拟量控制转速”及“转速段控制转速”转换指令:干接点,节点闭合为模拟量控制转速,节点断开为速度段控制转速。现场如果没条件,可

以在模拟量控制转速时,将变频PLC节点段短接;在转速段控制转速时,将变频

PLC节点断开。

5、变频器与其它电气设备接口

1)变频器输出给高压开关柜的有2路:

(1)高压紧急分断:变频器出现重故障时,自动分断高压开关,闭点有效。

(2)高压合闸允许:变频器自检通过或系统处于工频状态,具备上高压条件,闭点有效。

以上所有数字量采用无源接点输出,定义为接点闭合时有效。除特别注明外,接点容量均为DC200V,3A.

2)高压开关柜给变频器的状态信号1路:

高压.开关分闸信号:高压开关处于分断时,辅助节点闭合;1个。

6、其它功能说明

1)单模块旁路。

2)风罩:标配后出风。

3)操作箱:颜色为浅灰色,出线口为下出线,操作箱底部开孔2个,直径为30MM。

7、保护

输入变压器带浪涌吸收保护。

变压器允许过负荷能力符合IEC干式变压器过负荷导则及相应国标要求。

每个功率单元带三相输入熔断器保护。

变频装置有过电压,过电流,欠电压,缺相,变频器过载,变频器过热,电机过载等保护功能变频。

1)过载保护。电机额定电流的120%,每10分钟允许,超过则保护。

2)过流保护。变频器输出电流超过电机额定电流的150%,3S保护;额定电流200%,在10微秒内保护。

3)过压保护。检测每个功率模块的直流母线电压,如果超过额定电压的115%,则变频器保护。此保护实际上包括了对电网正波动的保护。

4)欠压保护。检测每个功率模块的直流母线电压,如果低于欠压保护定值,则变频器保护。磁饱和实际上包括对电网电压负向波动的保护。

5)过热保护。包括两重保护:在变频调速系统柜体内设置温度检测,当环境温度超过预先设置的值时,发报警信号;另外,在主要的发热元件,即整流变压器

和电力电子功率器件上放置温度检测,一旦超过极限温度(变压器140℃、功率

器件80℃),则保护。

6)缺相保护。缺相保护设置在每个功率模块上。当变频器输入侧掉相系统发出报警信号,并保护;功率模块的保险熔芯熔断却相时,系统会发出报警信号,同

时允许模块旁路运行。

7)光纤故障保护。当控制器与功率之间的连接光纤出现故障时,会发出报警信号并保护。

以上故障,均在中文用户界面上指定故障确切位置,便于用户采取对设施。

二、变频存储、安装要求

1、存储

1)如果备运输到达现场后发现有损坏,甲方应详细记录受损情况,并会同运货司机签字确认,对与受损情况应拍摄照片,以便乙方向公司索赔。

2)产品不得暴晒及淋雨,应存放在空气流通、周围介质温度-40~+70℃范围,空气最大相

对温度不超过90%(相对于空气温度20±5℃时)及无腐蚀性气体的仓库中。如果设备运抵现场后,不能立即进行安装,需注意设备的妥善保管,防止设备的淋雨及受潮。2、安装环境

为了保证调速装置能长期稳定和可靠地运行,乙方对调速装置的安装环境作如下要求,甲方应相应满足。

1)变频器启动时,要求环境温度大于0℃,无结露,最高环境温度40℃,温度变化应不大于5℃/h。如果环境温度超过允许值,甲方应考虑为其配备的空调设

备。一般情况下,希望将调速装置周围的环境温度控制在25℃左右。

2)环境温度要求小于95℃(20℃),相对温度的变化率每小时不超过5℃,同时避免结露,否则甲方应为其安装除湿设备。

3)不能将调速装置安装在有较大灰尘、腐蚀或爆炸性气体、导电粉尘等空气污染的环境里,最好为调速装置提供经过良好装修的专用房间。

4)海拔高度:1000m

3、柜体安装

1)变频器设备安装时,应考虑通风散热及操作空间的需要,整套装置背面离墙距离不得小于1500㎜,装置顶部与屋顶距离不得小于1500mm,装置正面离墙距离不得小

于2000mm,装置侧面离墙必须保留不小于1000mm的距离,方便安装调试及维护人

员通过。

2)所有柜体应牢固安装于基座之上,并和厂房大地可靠连接。变压器屏蔽层及接地端子PE也应接至厂房大地。各柜体之间应相互连接成为一个整体。安装过程中,

要防止调速装置受到撞击和震动,所有柜体不得倒置,倾斜角度不得超过30°.

3)调速装置安装过程中,甲方负责提供拆箱、吊装、模块就位的装备及劳动力服务,

乙方技术人员在现场提供技术指导。

4、电气安装

1)调速装置盘柜间的所有电缆提供、电缆敷设及接线由乙方负责。调速装置到现场

设备﹙高压开关、电机、操作箱、PLC各种仪表﹚之间的电缆选型、提供敷设及接

线由乙方负责。

2)由甲方提供一路AC200V±10%的专线控制电源,容量不小于3KVA.

3)输入和输出的高压电缆在实际安装前必须经过严格的耐压测试;

4)输入和输出电缆必须分开配线,防止绝缘损坏造成危险;

5)现场到调速装置的信号线,应该与强电电线分开布线,信号线采用屏蔽线,屏蔽

线的一端可靠接地。

6)要一直保证调速装置柜体的可靠连接厂房大地,保证人员安全。

7)甲方为调速控制装置埋设专用控制接地极,要求接地电阻不大于4欧姆。

8)三相干式变压器做为高压变频器的重要组成部件,对设备整体的长期稳定可靠运

行具有决定的作用,因此变频器运抵现场后,需要按照干式变压器厂家提供的说明

书对干式变压器进行检查,并在设备运行期间按照说明书的规定对变压器进行维

护。

三、技术服务及其它事宜

1、验收

1.1在设备到达现场后,乙方在与甲方确认后,派业务经验丰富的一名售后服务工程师作为代表到最终用户使用现场,进行指导安装和调试工作。调试时间:乙方为用户每套设备提供现场8天*人的现场调试服务。

1.2乙方代表对与甲方授权代表一起进行合同商品的供货清点,清点依据为合同规定的供货范围和随货装箱单。

1.3乙方代表对所供设备进行调试,使之达到正常工作状态或合同规定的验收标准。

1.4乙方负责对甲方操作人员进行现场培训使之能够独立操作变频器。

1.5乙方现场调试人员食宿自理,设备安装调试期间,甲方安排专人配合乙方,协调双方的安装调试工作。

1.6变频器一旦到达正常工作状态并通过24小时带载运行后,甲方代表在乙方代表提供的《技术服务报告》《验收报告》上签字验收。

1.7设备验收后,甲、乙双方人员按合同所列的供货范围办理交接手续。

2.售后服务

2.1售后服务的承诺:接收书面通知内8小时响应,如需要应24小时内到达现场。

2.2变频器正式投入运行后三年内,乙方负责每半年对变频器进行一次例行维护。

3.培训

培训方式:现场授课十实地讲解十操作演示十厂方人员实际操作。

培训内容:

变频调速原理

变频器原理

变频器的装置实物介绍

变频器的操作培训

变频器使用注意事项

变频器常见故障处理

变频器的日常维护

四、本协议作为商务合同的技术附件,与商务合同具有同等法律效力。

五、本协议一式4份,甲乙双方各执2份,未尽量事宜协商解决。

六、其它

﹙1﹚保密甲方有义务为乙方保守商业机密和高压变频器的技术机密,包括不以任何方式向第三方透露合同的价格、图纸、资料、技术手册以及设备的内部信息等。

(2)协商其它未尽事宜,双方友好协商解决。

甲方: 乙方:

代表代表:

日期:日期:

M701F4联合循环机组高压给水泵变频改造可行性分析

M701F4联合循环机组高压给水泵变频改造可行性分析 发表时间:2018-05-31T10:34:59.717Z 来源:《电力设备》2018年第1期作者:薛涛[导读] 摘要:文章针对M701F4联合循环机组具有高效、节能的优势,分析大功率辅机如何更有效节能优化的方案,提出了改造可行性研究分析。 (华能重庆两江燃机发电有限责任公司重庆 400714)摘要:文章针对M701F4联合循环机组具有高效、节能的优势,分析大功率辅机如何更有效节能优化的方案,提出了改造可行性研究分析。提出M701F4联合循环机组高压给水泵变频改造。为此,进行了不同调速方式下给水泵的效率对比;变频调速和液力耦合器调速给水泵的能耗对比,最后得出高压变频技术比液力耦合器在节能方面更具优势的结果。 关键词:M701F4;高压给水泵;高压变频;经济分析; 引言 燃气-蒸汽联合循环电厂具有热效率高、排污指标低、启停速度快的特点,目前已成为重庆电网调峰的优先选择,我厂机组为三菱M701F4型燃气-蒸汽联合循环供热机组,全厂一次规划五台机组,一期建设两台机组;每套机组的配置由一台燃气轮机、一台余热锅炉、一台蒸汽轮机和一台发电机组成单轴联合循环机组。机侧按燃气轮机、蒸汽轮机、盘车装置、发电机的顺序排列,从发电机端看,机组转向为顺时针方向,功率输出方式为冷端输出。每台余热锅炉系统应配置各2×100%容量的高、中压给水泵、凝结水加热器再循环泵,保证高、中压汽包水位在正常范围内。高旁减温水由高压给水泵中间抽头供给,中旁、低旁减温水由凝结水供给。 1给水泵主要技术参数及运行方式给水泵轴功率(设计工况点)2105kW;给水泵出口压力16.7MPa;给水泵出口流量375t/h;给水泵转速2885/min;给水泵电动机容量2420kW;电动机额定电压6kV;电动机额定电流210 A;电动机效率82%;给水泵数量2台给水泵采用1运1备、母管制的运行方式,通过高压给水液力偶合器调整高压给水泵转速及出口压力、锅炉给水调节门调节进入锅炉水量。 2液力偶合调速与高压变频调速效率对比给水泵采用液力耦合器调速,通过勺管调节循环油,改变耦合器内的充油量,从而调节涡轮转速,这样虽然能达到锅炉给水调节的功能但是存在以下问题:调速范围有限,转速不稳定,响应慢,液力耦合器容易卡涩。变频器具有调速范围宽,响应迅速,可实现真正软启动,减少电动机启动冲击,增加设备使用寿命,故障率低,平时维护工作量少等优点。可见,对原有液力耦合器调速进行高压变频器调速改造是一种比较理想的选者。 3技术应用原理 高压变频调速系统是由多个功率模块串联而成,通过将多个低压功率模块的输出叠加得到高压输出。该系统具有:(1)输入波形接近正弦波,对电网谐波污染小,无需考虑谐波抑制。(2)输入功率因数高,在20%~100%的负载范围内,功率因数≥0.96,无需功率因数补偿装置。(3)提供正弦波输出波形,不需输出滤波器,对电机应无特殊要求。 4应用方案内容 本次变频应用将DCS通过液力耦合器来控制流量,通过变频改造后为DCS通过控制变频器调节电机转速来调节流量。考虑到两台高压给水泵,正常运行时“一运一备”变频系统采用一台变频器同时带两台给水泵电机,即“一拖二”的模式,变频器根据DCS指令调节流量。变频系统设置自动旁路装置,变频器故障时,变频系统给出自动旁路允许信号,由DCS给出自动旁路命令。 5变频器通风散热在正常的运行过程中变频器中的电力电子功率器件会发热,而这些热量都散失在柜体内,由于电力电子功率器件正常工作时的壳体温度不能超过85℃。温度过高,变频器就会过热保护,自动跳闸。为了保证高压变频设备处于正常、稳定的工作状态下,柜体内部温度需在65℃以下,变频器室需利用电厂现有中央空调作为冷却媒介。 6控制流程 变频调速系统通过DCS对变频器进行启动、停机、调速等控制,并可在DCS上显示变频器的运行数据和当前状态,实时监控系统运行。为了保证锅炉给水系统的可靠性,变频器装置具有工频自动旁路装置,当变频器发生故障时,在保证锅炉的供水要求,提高了整个系统的安全稳定性前提下,通过DCS自动联启备用给水泵下运行。操作方面有远程控制和本地控制两种控制的方式。调节采用原调节方式进行。这两种控制方式可提高系统的安全性能。DCS做好闭环控制,DCS根据机组的负荷情况,按设定程序检测母管压力情况,运算后给变频器一个合适的频率值,从而实现对锅炉给水泵电机转速的自动控制,保证母管压力的稳定。当母管压力低于设定值时,便将备用的给水泵自动投入运行。 7改造思路 7.1变频技术选定 目前发电厂变频改造主要采用液力偶合器调速和交流变频调速两种方式;后者是被公认为效果很佳的调速方式。另外,从电厂场地受限制等情况综合考虑,改造采用了高压交流变频调速技术。 7.2运行方式确定

135MW汽轮发电机组的锅炉给水泵技术协议

发电厂电动给水泵技术协议 1 总则 1.1 本技术协议适用于工程四台135MW汽轮发电机组的锅炉给水泵。它提出了该设备的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2 本技术协议提出的是最低限度的技术要求,并未对一切技术要求作出详细规定,也未充分引述有关标准及规范的条文。供方保证提供符合本规范书和相关的国际、国内工业标准的优质产品。 1.3 如供方没有对本技术协议提出书面异议,需方则可认为供方提供的产品完全满足本技术协议的要求。 1.4 如需方有除本技术协议以外的其他要求,以书面形式提出,经供需双方讨论、确认后,载于本技术协议。 1.5 本技术协议所引用的标准若与供方所执行的标准发生矛盾时,按较严格的标准执行。1.6 本技术协议经供、需双方共同确认和签字后作为订货合同的技术附件,与订货合同正文具有同等效力。 1.7 供方对锅炉给水泵组的成套系统设备(含辅助系统与设备)负有全责,即包括分包(或采购)的产品。分包(或采购)的产品制造商应事先征得需方的认可。 1.8 在合同签定后,需方有权因规范、标准、规程发生变化而提出一些补充要求。 2 设计与环境条件 2.1 工程条件及设备运行环境 厂址: 电厂自然地面标高:<1000m(黄海高程) 年平均气压1041.1hPa 多年平均气温13.1℃ 多年最低气温-22.9℃ 平均相对湿度55% 地震烈度:7度 2.1.1 电动机电源电压:高压6 kV;低压380 V 2.2 设计条件 2.2.1 设备名称、用途及其整体组成 2.2.1.1设备名称 锅炉给水泵及配供的测控设备。 2.2.1.2 设备用途 锅炉给水泵:锅炉给水泵它向锅炉连续供水并向锅炉过热器、再热器及汽轮机高压旁路提供减温水。 2.2.1.3 设备组成 锅炉电动给水泵由泵体总成、泵座及配供的测控设备等主要部件组成. 2.2.2 设备安装位置 2.2.2.1 给水泵安装地点:汽机房内零米层 2.2.3 泵组的布置要求:电动机、液力偶合器及给水泵同轴。 2.2.4 电厂型式:凝汽式燃煤电站。 2.2.5 机组型式及运行方式 2.2.5.1 锅炉容量及型式 锅炉最大出力为440t/h;型式为超高压中间再热煤粉锅炉。

30MW机组给水泵变频器施工方案..

河北华丰煤化电力有限公司 30MW6#机组给水泵变频器改造 电气及仪表施工方案 编制: 审核: 设备处审批: 制造部审批: 动力分厂发电三车间 2015年07月16日

目录 一、编制依据 (3) 二、工程概况 (3) 三、施工组织及准备 (3) 四、施工方案 (9) 五、应急措施 (9) 六、安全施工保证措施 (10) 七、注意事项 (10)

一、编制依据 1.东方日立(成都)电控设备有限责任公司设计的10KV高压变频器电器线路 工程设计图纸。 2.10KV 电缆线路及高压变频器柜安装工程技术文件。 3.国家现行变配电安装工程施工及验收规范及质量检验评定标准。 4.工程项目施工现场实际情况、施工环境、施工条件和自然条件。 5.本工程采用的规范及标准编号如下: 本工程所采用的规范、标准编号 二、工程概况 本工程为河北华丰动力分厂发电三车间30MW机组给水泵变频器改造,新增变频器柜两套。 三、施工组织及准备 3.1、组织机构及职责: 总负责:许晓波 现场负责:张利杰、胡向军、王学科、赵刚、张红涛、刘太平、陈超、张刚、霍香烩、 张利杰负责:动力分厂发电车间应急预案实施及存在问题协调工作。 胡向军负责:调试过程中出现问题协调工作。 王学科负责:高压电缆头制作、耐压试验及安装工作。 刘太平、张刚负责:高压电器设备控制系统电缆线校对、接线工作。

霍香烩负责:自动化系统电缆线校对、接线,画面制作、程序编写及下装工作。 赵刚负责:30MW发电机应急措施预案实施工作。 参加人:相关专业人员。 技术指导:厂家人员 安全监护: 3.2、安装调试时间:2015年7月17日——2015年7月23日 3.3、人员安排 3.4、主要施工机具见下表: 3.5、施工前准备 3.5.1进入高压变频器室施工人员进行安全施工教育,做好安全技术交底工作,并

泵技术协议书(模板)Word版

技术协议书 甲方: 乙方:

1.总则 1.1本技术协议书提出的是最低限度的要求,并未对一切细节做出规定,也未充分引述有关标准和规范的条文,乙方应保证提供符合本技术协议书和有关最新工业标准的产品。 1.2本技术协议书所使用的标准如与乙方所执行的标准发生矛盾时,按较高标准执行。 2.主要技术标准 1.GB/T16907《离心泵技术条件》 2.GB3216《离心泵、轴流泵、混流泵和旋涡泵试验方法》 3.GB10889《泵的振动测量与评价方法》 4. GB/T4297《泵涂漆技术条件》 5. GB3215《炼厂、化工及石油化工流程用离心泵通用技术条件》 6.GB9439《灰铸铁件》 7.GB/T13006《离心泵、混流泵和轴流泵汽蚀余量》 8.GB/T13007《离心泵效率》 9.GB755《旋转电机基本技术条件》 10.GB1993《旋转电机冷却方法》 11.GB4942-1《电机结构及安装型式代号》 12.GB4942-1《电机与外壳保护等级》 13. JB/T6879-93《离心泵铸件过流部件尺寸公差》 14. JB/T6880.2-93《泵用铸钢件》 15. JB/T6880.1-93《泵用铸铁件》 16. JB/T8097-95《泵的振动测量与评价方法》 17. JB/T8098-95《泵的噪音测量与评价方法》 18. GB/T3214-91《泵流量的测定方法》 3.甲方设计和运行条件 3.1自然与公用工程条件 极端最高气温:℃ 极端最低气温:℃ 室外多年平均相对湿度: %

平均气压: KPa 厂区地震设防烈度:级 3.2 循环冷却水参数: 进水压力: MPa(G) 回水压力: MPa(G) 进水温度:℃ 回水温度:℃ 3.3本次采购的设备技术参数及数量(见如下数据表) 4.设备制造的技术要求及其验收要求 4.1泵在正常运行工况下,使其运行效率处于高效率区。在额定工况下运行时,泵的流量、扬程和效率等性能,都予以保证,且不应有负偏差。流量在额定值时,扬程偏差应在+3%范围内变化,关死点扬程允许偏差±3%。 4.2泵的性能曲线(流量—扬程曲线)变化应当平缓,从额定流量到零流量扬程升高不超过额定流量时扬程的25%。 4.3泵组在正常运行时(设计点),其轴承处振动值双幅不大于0.05mm(保证值),轴承温升不超过35℃,最高温度不应超过70℃。 4.4泵的第一临界转速不低于额定转速的125%。乙方提供的支撑系统(底座、机身及轴承箱),在额定转速<10%的变化范围内不得产生共振。 4.5每台泵出厂前都要按照国家有关标准和规范,进行标准工厂测试,包括机械运行测试和性能测试。 4.6要求NPSHa- NPSHr>1m。 4.7乙方应针对本设备制造特点进行制造难点、风险分析,并提出有效解决方案,以此制订详细的设备制造、检验方案。

凝结水泵电机变频改造方案

新疆宜化化工有限公司热电分厂凝结水泵电机变频改造方案 批准: 审定: 审核: 编制: 新疆宜化化工有限公司热电分厂 2019年06月

目录 一、工程简介 (2) 二、现状把握 (2) 三、改造原因 (3) 四、调研情况 (4) 五、整改方案 (4) 六、投资回报 (5) 七、施工要求 (5) 八、风险评估 (6) 九、补充说明 (6) 十、预期效果 (7)

新疆宜化化工有限公司热电分厂 凝结水泵电机变频改造方案 一、工程简介 工程名称:新疆宜化电厂凝结水泵电机变频器改造项目 建设地点:新疆昌吉州五彩湾工业园区新疆宜化化工有限公司热电分厂 工程性质:技改项目 二、现状把握 新疆宜化热电分厂2*330MW机组的四台凝结水泵电机目前采用工频运行方式,两台凝结水泵电机互为备用。凝结水泵为多级离心泵,设计流量为1021t/h,扬程为318m,运行时出口压力高,除氧器上水调门节流明显,尤其机组启动及低负荷阶段,需配合开启凝结水再循环调门控制出口压力,导致再循环管道振动及冲刷现象明显,目前我厂#1、#2机组凝结水系统已多次发生再循环旁路阀及阀后管道冲刷减薄泄漏事件,降低了机组运行安全可靠性。 电机铭牌:

高压变频器原理简述: 水泵轴功率与其转速的立方成正比,当电机转速从N1变到N2时,其电机轴功率P 的变化关系为:P2/P1=(N2/N1)3,即水泵转速略有降低功率便有较大幅度的下降,可见降低电机转速能得到立方级的节能效果。 交流电动机的转速公式n=60fp(p为电机极对数),即转速n与频率f成正比,通过改变电源频率即可改变电动机的转速,达到降低电机运行功率、节能目的。 变频器是一种使电动机变速运行进而达到节能效果的设备,目前广泛使用的高压变频器是一种串联叠加型高压变频器,即采用多台单相三电平逆变器串联连接,输出可变频变压的高压交流电。高压变频器本身由变压器柜、功率柜、控制柜三部分组成,三相高压电经高压开关柜进入,经输入降压、移相给功率单元柜内的功率单元供电,主控制柜中的控制单元通过光纤对功率柜中的每一功率单元进行整流、逆变控制与检测,根据实际需要通过操作界面进行频率的给定,输出可变频率、可变电压的电源来改变电机转速。 三、改造原因 3.1 电机采用工频的运行方式,存在以下问题: 3.1.1启动电流大:启动电流一般为4-7倍的电机额定电流,较大启动电流,不仅对电机、管道产生冲击,且影响同一母线上其他电气设备的正常运行。 3.1.2资源浪费:采用直接启动、工频运行方式,给水量不能随着季节、机组运行工况、负荷等变化自动调整流量、压力,经常出现水量供给过剩、设备超压运行等现象,造成资源浪费;而且运行中电机功率不可调,往往出力过剩,存在“大马拉小车”的现象,效率低下,造成电能浪费。 3.1.3自动化程度低:由于给水流量不能自动调节,调节给水量增加了许多繁琐的人工操作,增加了不安全隐患因素。

如何排除锅炉给水泵常见故障及其日常维护

如何排除锅炉给水泵常见故障及其日常维护锅炉给水泵可以分为很多种,有DG型次高压锅炉给水泵,还有DC型,锅炉给水多级泵。 DG型单吸多级离心泵作为高压锅炉给水或其他高压给水用。输送介质温度低于160℃,适用于电厂各种容量机组的单元制及母管给水系统。 现代锅炉给水泵的日常养护必须以故障预防为目的,建立科学的养护体系与制度,以指导给水泵的日常养护工作。泵阀英才网专家认为:建立给水泵零部件故障及更换记录,详细掌握各部件损坏时间,以便于后期在零部件到使用寿命前及时更换,避免零部件(例如:轴承等)损坏后发现不及时对机组造成损坏。另外,还要加强给水泵润滑系统的保养,经常性检查润滑油量,及时对部件进行润滑,避免“干磨”等情况的发生。润滑油的添加前要注意检查油质与添加口的清洁度,避免添加过程带入杂质损坏轴承。在养护中还要注意对给水泵系统管路的检查与保养,及时对泄露处进行堵漏,管路外侧防锈涂层要经常进行检查,对涂层剥落处及时进行喷涂,以此确保管路的防腐蚀性。养护中还需要注意对给水泵水源处理系统的检查与保养。 锅炉给水泵是关系到锅炉系统安全稳定运行的关键,是利用现代自动控制技术设计与组建的锅炉自动液位调节系统的重要组成部分。目前我国拥有锅炉设备四十多万台,其中大部分是工业企业用锅炉以及电厂用锅炉系统,很小的一部分用于居民浴池等商业领域。给水泵

的稳定运行时锅炉运行的基础,是现代锅炉液位调节系统的重要组成本部分。一旦给水泵出现故障将严重危害锅炉的运行安全,严重的还将导致重大事故的发生。因此,加强锅炉系统给水泵的日常养护与维修,已经成为现代锅炉维护部门的重要工作。 常见故障及排除方法: 1、流量扬程降低,造成原因 (1)、泵内或吸入管内存有气体; (2)、泵内或管路有杂物堵塞; (3)、旋转方向不对; (4)、叶轮流道不对中; 排除方法: (1)、排除气体、检查清理杂物、改变旋转方向 (2)、检查、修正流道对中 2、电动给水泵电动机过热的分析与排除对于采用电动机为动力的给水泵来讲,最为常见的故障就是电动机过热。造成电动机过热的原因主要是由于电压偏高或偏低、传动不畅、通风系统故障或机组故障造成电动机过热。电动机过热严重时会造成绝缘烧坏、转子断条等情况发生。因此,在发现电动机过热时应采用气动其他动力方式,进行停机检修。电压原因造成的电动机过热应对电动机供电系统进行检查,通过恢复稳定供电解决锅炉给水泵电动机过热故障。另外传动不畅也会造成电动机过热,由于电动机与给水泵间的传动不畅造成电动机负载过大,出现小马拉大车的现象,电动机过载是温度升高。此种

高压给水泵变频改造技术协议(1600KW )

6KV高压给水泵变频改造工程技术协议书 二〇一〇年十二月 目录

技术规范 (2) 一、总则 (2) 二、技术要求 (2) 三、设备规范 (13) 四、包装、运输和贮存 (13) 五、高压变频调速装置规范表 (14) 附件1、供货范围 (17) 附件2、技术资料和交付进度 (18) 附件3、技术服务和设计联络 (20)

一、总则 1、技术协议书仅适用于水电厂六期1600KW给水泵电动机的高压变频调速装置。它提出 了变频调速装置本体及附属设备的功能设计、结构、性能、安装和试验等方面的技术要求及供货范围。 2、技术协议书提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分 引述有关标准和规范的条文,乙方应提供符合工业标准、国家标准和技术协议书的优质产品。 3、技术协议书所使用的标准如遇与乙方所执行的标准不一致时,按较高标准执行。 4、所有文件、图纸采用中文,相互间的通讯、谈判、合同及签约后的联络和服务等均应 使用中文。 5、本技术规范书未尽事宜,由供、需双方协商确定。 二、技术要求 1、应遵循的主要标准 下列标准所包含的条文,通过在技术协议书中引用而构成技术协议书的基本条文。在技术协议书出版时,所示版本均为有效。所有标准都会被修订,使用技术协议书的各方应探讨使用下列标准最新版本的可能性。 GB 156-2003 标准电压 GB/T 1980-1996 标准频率 GB/T 2423.10-1995 电工电子产品基本环境试验规程振动(正弦)试验导则GB 2681-81 电工成套装置之中的导线颜色 GB 2682-81 电工成套装置之中的指示灯和按钮的颜色 GB 3797-89 电控设备第二部分:装有电子器件的电控设备 GB 3859.1-93 半导体电力变流器基本要求的规定 GB 3859.2-93 半导体电力变流器应用导则 GB 3859.3-93 半导体电力变流器变压器和电抗器 GB 4208-93 外壳防护等级的分类 GB 4588.1-1996 无金属化孔单、双面印制板技术条件 GB 4588.2-1996 有金属化孔单、双面印制板技术条件 GB 7678-87 半导体自换相变流器 GB 9969.1-8 工业产品使用说明书总则 GB 10233-88 电气传动控制设备基本试验方法 GB 12668-90 交流电动机半导体变频调速装置总技术条件

给水泵技术协议

给水泵技术协议 一、设备规范 1.水泵的设备性能、配置及材质要求 项目单位正常运行工况 型号厂家提供 流量 t/h 35,65 扬程 m 800 效率 % 80 转速 r/min 2950 介质温度 ? ?160 轴功率 kw 必需汽蚀余量 m 旋转方向正旋,从电动机端看泵转向为顺时针方向泵体铸钢ZG230—450 叶轮铸钢ZG230—450 导叶铸钢ZG230—450 轴合金钢40Cr 进、出水段铸钢ZG230—450 设备配件及材质要求 中段铸钢ZG230—450 叶轮当套不锈钢1Cr13 平衡装置不锈钢1Cr13 密封环合金钢38CrMoAl

导叶套合金钢38CrMoAl 2.配用电机型号及参数由乙方根据给水泵的型号进行配置,在此不做具体要求注:(1)乙方所供的泵座必须和甲方现有的基础尺寸相对应,泵与电机的联轴器由乙方提 供(电机轴端图纸甲方提供)。(3)泵的密封方式为机械密封。 3.技术要求 3.1性能要求 3.1.1给水泵能在前表中所提供参数下长期连续运行,并作为主给水给水泵的设计点,同 1 时又能满足锅炉各种允许运行情况下给水的要求。 3.1.2给水泵在额定运行工况下,使其运行效率处于最高效率点,在最大工况下运行时,给水泵的流量、扬程和效率等性能都予以保证,且没有负偏差值。 3.1.3给水泵的性能曲线(流量一扬程)从最大运行点至出口关闭点的变化平缓,水泵出口关闭,扬程升高不高于设计点总扬程的30%。 3.1.4给水泵的第一临界转速,为额定转速的125%以上。 3.1.5给水泵的最小流量不超过设计流量的20%。 3.1.6给水泵可承受热冲击,当汽轮机发电机甩负荷后,允许给水温度下降速率为2.8?/s。 3.1.7给水泵轴承各方向的双振幅振动值不大于0.04mm. 3.1.8给水泵要求的静止吸入水头确保进门管道和除氧器的布置在瞬态运行期间给水泵不发生汽蚀(正常情况下)。 3.2结构要求 3.2.1给水泵为卧式多级型。 3.2.2泵的吸入和吐出管方位垂直向上。 3.2.3设备的噪声在距离设备1米处,噪声控制在85分贝以下。

450kW水泵高压变频技术方案(1)

深圳瑞普泰科技节电有限公司辽阳石油化纤公司化工厂 (循环水泵、路灯) 技术方案 Technical Proposal 设备:变频器RPOWERT-HIVERT-Y06/061 路灯节电器RPOWERT-ZNLD 时间:2017年10月25日

第一部分:循环水泵 1. 概述 深圳瑞普泰科技节电有限公司是一家专业开发、生产各种负载节电器及高压大功率变频器的民营高科技企业。其变频器系列产品广泛应用于火力发电、城市供水、采油采矿、化工、冶金、水泥、造纸等领域,可实现对各类高压电动机驱动的风机、水泵、空气压缩机等负载的调速、节能、软启动和智能控制,综合效益十分显著。 深圳瑞普泰科技节电有限公司拥有国内一流的专业研发和管理队伍,员工中博、硕士比例约占20 %,约65 %的员工具有本科以上的学历。公司十分重视人才的培育和制度建设,力求使自己成为一支目标精准、反应迅速、高效务实、温馨和谐的团队。 精益求精的技术设计、稳定可靠的产品品质、独具优势的性价比率和先人后己的服务心态是深圳瑞普泰科技节电有限公司的经营特色和致胜法宝。深圳瑞普泰科技节电有限公司愿与国内外同行一道,共同致力于开创中国工业的绿色能源时代。 公司RPOWERT-HIVERT系列高压大容量变频器已于2003年3月通过国家电力科学研究院、国家电控配电设备质量监督检验中心等权威部门的严格测试。在质量保证体系方面,通过了ISO9001-2000认证。 RPOWERT-HIVERT变频器已有很好的运行业绩,得到了用户的认可,并在业界取得了不少国内客户青睐。 采用RPOWERT-HIVERT-Y系列高压变频器实现恒压供水,具有以下特点: ●优良的调速性能,可实现恒压供水,提高供水质量; ●良好的节能效果,可提高系统运行效率; ●实现电机软启动,减小启动冲击,降低维护费用,延长设备使用寿命; ●压力恒定,避免晚间流量小时压力过高而造成的管线损坏; ●减小跑、冒、滴、漏造成的损失; ●控制方便、灵活,自动化水平高,无须人工倒泵和调节阀门,减轻劳动强度; ●系统安全、可靠,确保负载连续运行; ●输入谐波含量小,不对电网造成污染; ●输出谐波含量低,适合所有改造项目的异步电动机,无须降容使用。 2. 用户条件及要求 贵厂现共装有主循环水泵三台,两用一备,并网运行,一台阀门全开,另一台阀门开度约52%。拟对阀门开度52% 的水泵进行变频改造,采用调速方式,实现供水,保证恒压。 3. 变频器选型及性能特性 根据电机容量,选用深圳瑞普泰科技节电有限公司自主研发和生产,适合驱动高压异步电动

电动给水泵节能改造研究

电动给水泵节能改造研究 发表时间:2019-08-15T16:25:55.593Z 来源:《当代电力文化》2019年第07期作者:刘刚[导读] 本文以西北地区某660MW等级直接空冷机组为例,对电动给水泵调速行星齿轮改造方案进行了详细论述,与电动给水泵变频改造进行了对比分析。 山东电力工程咨询院有限公司山东济南 250013摘要:本文以西北地区某660MW等级直接空冷机组为例,对电动给水泵调速行星齿轮改造方案进行了详细论述,与电动给水泵变频改造进行了对比分析。鉴于两种改造方案初投资差距不大,从整个全寿期和可靠性方面考虑,推荐660MW等级电动给水泵采用调速行星齿轮方案进行节能改造。 关键词:电动给水泵改造;调速行星齿轮;变频 0 引言 节能环保始终是电力企业发展需要关注的重要课题,在保证机组运行可靠的前提下,如何进一步减少厂用电率将成为电厂管理人员十分关注的问题。 国内空冷火力发电厂锅炉给水泵通常配置3台35%或50%容量的电动给水泵,电动给水泵通常会采用液力耦合器作为转速调节装置。作为发电厂的“心脏”,电动给水泵耗电巨大,据资料统计,一般空冷机组电动给水泵厂用电约为2.5%~3%。 近年来,随着电网容量的不断增加,用电峰谷差也逐步增大,需要机组调峰幅度相应增加,各电厂的平均负荷率在65%~75%之间。作为全厂最大辅机设备的给水泵,虽然配置有液力耦合器调速,但液耦效率在固定输入转速下随着给水泵输出转速的降低而降低,且液力耦合器长期偏离最佳工况点,给水泵组的效率偏低,约在55%~70%,导致给水泵耗电率一直居高不下,直接影响到全厂经济技术指标和节能效益。 因此,有必要对电动给水泵的调速方式进行改造,以提高给水泵的效率,降低厂用电。 1 机组介绍及存在的问题 拟改造电厂装机容量为2X660MW,为西北地区某超临界燃煤直接空冷汽轮发电机组。 汽轮机型号为:NZK660-24.2/566/566;型式为:超临界、一次中间再热、三缸四排汽、单轴、直接空冷凝汽式汽轮机;该机组额定出力660MW;最大连续出力为711.9MW。该汽轮机采用复合变压运行方式,汽轮机具有七级非调整回热抽汽。 给水系统配三台35%电动调速给水泵,调速装置为增速型液力耦合器调速,电动机铭牌功率11000KW,液力耦合器主要参数如下表: 液力耦合器驱动调速的电动给水泵的节电潜力是很大的。其原因是按设计技术规范进行设计时,锅炉机组的最大连续蒸发量是按汽轮机组的最大进汽量的1.05倍计算的,给水泵的最大流量是按锅炉最大连续蒸发量的1.05倍计算的,液力耦合器是按给水泵最大流量配套的,这样一来,机组投产后,即便在额定工况运行,给水泵液力偶会器已经偏离额定工况10%左右,近年来,火电机组年平均负荷率一般在65%~75%。液力耦合器最高效率点为其额定工况点,偏离额定工况效率明显降低,这是液力偶会器的最大弊端,效率低,损耗大,运行中经常出现油温过高等异常情况。 目前300MW及以下机组电泵,电动机功率偏小,节能改造通常采用变频调速方式进行改造,变频改造厂家主要包括:上海电力修造总厂有限公司,东方日立(成都)电控设备有限公司,西门子(中国)有限公司等,改造业绩众多,节电效果明显[1,2]。660MW等级的机组电动给水泵,50%容量给水泵功率一般在14000kW左右,35%容量给水泵功率一般在11000kW左右,电动机功率比较大,变频器价格偏高,目前改造业绩偏少。 除变频调速改造外,采用调速行星齿轮代替液耦也是一种潜在可行的改造方式,本文主要介绍行星齿轮调速改造方案,以供同类型机组电泵节能改造参考。 2 调速行星齿轮原理介绍 调速行星齿轮在机械调速领域为技术最为先进的设备之一,可以说液力耦合器的升级版,结构图如图1所示,调速行星齿轮具有以下特点: 1)由一个可调节之液力变扭器、一个固定的行星齿轮和一个旋转行星齿轮组成; 2)通过液力变扭器来调节转速; 3)通过动力传递之里最后矢量叠加原理而获得高效率; 4)调速范围:60%~100%。

循环泵变频改造施工组织设计方案

五、循环泵变频改造施工组织设计方案 5.1编制说明: 安装工程施工组织设计方案,在详细阅读“招标文件”充分理解设计图纸,深入现场考察的基础上,对目标工期、施工质量控制、项目管理机构及劳动组织、施工机械设备和周转材料配备、主要分项工程的施工方法及技术措施、质量安全、文明施工保证措施等方面进行初步的组织设计和部署,我们承诺:工程一旦由我公司中标,我们将在本施工组织设计的基础上,根据施工合同的要求以及业主的各项指示,向业主提供更能符合项目各项要求的施工组织设计方案,确保工程目标的完成。 5.2工程概况: 河庄坪污水厂排污泵变频改造项目主要工程量为: (1)对现用的排污泵系统安装变装控制装置,实现变频运行达到节能的目地。 (2)变频器选用ABB,用变频控制柜替换现用电源柜,原位安装一对一控制。 (3)控制柜具备本地和远程控制功能以及手动和自动运行两种方式。 (4)变频控制柜除标准功能外,增加数字式电参数仪表。 (5)预留标准通信接口。 (6)在值班室增加一面远程控制箱,可实现两地控制,方便操作。 (7)采用定液位变频运行,采用超声波液位仪。 (8)将泵主要运行参数上传到泵房值班室。 (9)更换现用的三台多级管道泵为第四代管道泵,按现有功率进行更换;增大过滤器容量,改善排污能力。 5.3编制依据: 1、《低压配电设计规范》GB50231-98; 2、《电气装置安装工程电气照明装置施工及验收规范》GB50259-96; 3、《工业自动化仪表工程施工及验收规范》GBJ93-86; 4、《电力工程电缆设计规范》GB50217; 5、《低压成套开关设备和控制设备》GB/7251.1-2005; 6、《电气装置安装工程爆炸和火灾危险环境电气装置施工及验收规范》GB50257-1996; 7、《建筑电气工程施工质量验收规范》GB/50303-2002

泵技术协议书(模板)

泵技术协议书(模板) 技术协议书甲方乙方11.总则1.1本技术协议书提出的是最低限度的要求,并未对一切细节做出规定,也未充分引述有关标准和规范的条文,乙方应保证提供符合本技术协议书和有关最新工业标准的产品。 1.2本技术协议书所使用的标准如与乙方所执行的标准发生矛盾时,按较高标准执行。 2.主要技术标准1.GB/T16907《离心泵技术条件》2.GB3216《离心泵、轴流泵、混流泵和旋涡泵试验方法》3.GB10889《泵的振动测量与评价方法》4.GB/T4297《泵涂漆技术条件》5.GB3215《炼厂、化工及石油化工流程用离心泵通用技术条件》6.GB9439《灰铸铁件》7.GB/T13006《离心泵、混流泵和轴流泵汽蚀余量》8.GB/T13007《离心泵效率》9.GB755《旋转电机基本技术条件》10.GB1993《旋转电机冷却方法》11.GB4942-1《电机结构及安装型式代号》12.GB4942-1《电机与外壳保护等级》1 3.JB/T6879-93《离心泵铸件过流部件尺寸公差》1 4.JB/T6880.2-93《泵用铸钢件》 15.JB/T6880.1-93《泵用铸铁件》16.JB/T8097-95《泵的振动测量与评价方法》17.JB/T8098-95《泵的噪音测量与评价方法》 18.GB/T3214-91《泵流量的测定方法》3.甲方设计和运行条件3.1自然与公用工程条件极端最高气温℃极端最低气温℃室外多年平均相对湿度%平均气压KPa2厂区地震设防烈度级3.2循环冷却水参数:进水压力MPa(G)回水压力MPa(G)进水温度℃回水温度℃3.3本

次采购的设备技术参数及数量(见如下数据表)名称数量型号参数主要材质电机流量m3/h扬程m效率%叶轮壳体轴4.设备制造的技术要求及其验收要求4.1泵在正常运行工况下,使其运行效率处于高效率区。 在额定工况下运行时,泵的流量、扬程和效率等性能,都予以保证,且不应有负偏差。 流量在额定值时,扬程偏差应在+3%范围内变化,关死点扬程允许偏差±3%。 4.2泵的性能曲线(流量—扬程曲线)变化应当平缓,从额定流量到零流量扬程升高不超过额定流量时扬程的25%。 4.3泵组在正常运行时(设计点),其轴承处振动值双幅不大于0.05mm(保证值),轴承温升不超过35℃,最高温度不应超过70℃。 4.4泵的第一临界转速不低于额定转速的125%。 乙方提供的支撑系统(底座、机身及轴承箱),在额定转速<10%的变化范围内不得产生共振。 4.5每台泵出厂前都要按照国家有关标准和规范,进行标准工厂测试,包括机械运行测试和性能测试。 4.6要求NPSHa-NPSHr>1m。 4.7乙方应针对本设备制造特点进行制造难点、风险分析,并提出有效解决方案,以此制订详细的设备制造、检验方案。 4.8泵的叶轮、转子或其它可拆部件与同型号泵应具有互换性。

DG85给水泵说明书

锅炉给水泵使用说明书 一、前言 为保证本泵的安全和经济运行,泵安装、检修和运行人员必须了解掌握、且要遵循本说明书的有关记录。 固定在泵体上的泵标牌上标明了本泵某规格的设计(额定)点的主要参数,在订货时,务必写清这些内容。 二、概述 DG85-80型泵为单壳、单吸、节段式离心水泵,用于输送温度低于160℃的清水。 本泵主要用于轻纺工业能量综合利用和中小型热电厂次高压锅炉给水,也可作于输送含不溶固体杂质0.25﹪、溶于水的固体杂质5﹪的物理和化学性质类似于水的其它介质。 额定点性能参数如下: 流量:Q=85m3/h 扬程:H=560~960m 转速:n=2980/min 效率:∩=62﹪ 汽蚀余量:NPSHr=4.5m 水温:T≦160℃ 密度:P=918kg/m3 型号意义说明:

DG 85-80*12 三、结构说明 本型泵是单壳体、单吸、多级臣式节段式离心泵结构,泵的进出口均直向上、(见结构图)具体结构如下: I、定子部分 主要由前段、中段、导叶、后段、轴承架和平衡室盖等零件用穿杠和螺母联成一体、前段、后段两侧膀用螺栓和螺母固定在泵座上(见图三)。 II、转子部件 主要由叶轮、叶轮挡套、平衡挡套、平衡盘及轴套零件用小圆螺母把紧,固定在轴上采用平键防转。整个转子支承在两端的轴承上。转子用弹性柱销联轴器与电动机直接联接。 为了补偿膨胀在最后一级和平衡挡套之间装了齿形垫,泵检修时应更换此件。 III、平衡机构 本泵采用能完全且自动平衡轴向力的平衡盘水力平衡装 置,该装置由平衡板、平衡盘、平衡套和平衡挡套四个零件组成。

IV、轴承部分 泵转子由两个相同的标准滑动轴承来支承,采用甩油环进行自行润滑,并外接工业水或自来水进行冷却,压力﹥0.1MPa。两端轴承下部各有三个调节螺钉,用于调整轴瓦中心。 V、泵的冷却系统 当输送介质温度超过80时,需接通冷却水的部位有: ⑴填料函腔 ⑵填料函冷却室 ⑶水冷填料压盖 ⑷轴承水冷压盖 冷却水可用自来水,压力为0.15~0.3MPa,流量为0.5~1m3/h. VI、泵的密封 ⑴泵的前段,中段和后段之间的静止结合面采用金属面密封,且在该密封面的外止口设有辅助密封圈(三元乙丙胶为材料);轴承架与平衡室盖之间,平衡板与后段结合面处采用胶圈密封。 转子各零件间来用软填料密封,轴套采用胶圈密封。 ⑵泵的工作室两端采用软填密封,填料压盖和填料环是通冷水冷却的。 ⑶泵的各级间采用密封环、导叶套公别与叶轮口环,叶轮挡套间

锅炉给水泵的变频调速改造

锅炉给水泵的变频调速改造 1 现状 系统是向锅炉不间断供水,保证锅炉正常运行的重要环节。我厂现有锅炉5台,其中SHL35-16-P型2台,SHL20-13-P型1台,T-18A-13型2台,总蒸发量126吨/时。供给本厂及相邻各厂的生产和生活用汽。实际运行中炉前蒸汽压力较低,夏季一般为,冬季一般为,蒸发量变化较大,夏季20-35T/H,冬季90-110T/H。与锅炉相配套的给水泵为4GC-8X5型,共6台,分为2组,每组3台,通过母管向各台锅炉供水。每台泵的额定流量55M3/H,扬程19M,驱动电动机功率55KW。运行方式是夏季开1-2台,冬季开2-3台,其余备用。运行时,由于锅炉给水泵的供水能力大于锅炉的蒸发量,尤其是当锅炉负载愈轻时,二者的差值愈大,因此必须实行流量调节。传统的给水泵是连续恒速运行的,流量调节通过调节阀和回流支路来实现(如图一)。 2 改造的可行性 这两种方法都存在明显的缺陷:采用调节阀时,随着阀门开度的减小,水泵出口压力上升,达到2Mpa以上,阀门两侧的压差将增大,达到以上,远远大于原设计的水泵出口压力高于锅炉汽包压力(包括给水垂直落差及管路压降)的要求,不但造成能量的浪费,而且使得水泵的振动和磨损加大,寿命缩短。采用回流支路调节时,大量水的回流同样造成能量的无谓消耗。 因此,对给水系统实施技术改造,降低水泵的出口压力,消除回流,减少能源消耗和设备磨损,已成大势所趋。 众所周知,水泵运行遵循如下规律:流量Q与转速N成正比,扬程(压力)H与转速N的平方成正比,轴功率P与转速N的三次方成正比,电动机的转速N与电源的频率F成正比,因此改变电源频率就可改变电动机即给水泵的转速。 变频调速技术是电力电子技术和微电子技术相结合的产物,以其优异的调速特性和显着的节能效果,在国民经济的各个领域获得了广泛的应用。当今,变频调速已成为交流电动机转速调节的最佳方法。水泵采用变频调速后,给水流量的调节就可通过改变

水处理设备技术协议书

技术协议 协议编号: 设备名称:150TPH化水系统 买方: 卖方: 签定日期:2006 年04 月11 日 签订地点:

*****************有限公司 **********公司 水处理设备技术协议书 协议编号:***********公司(以下简称买方)与***************有限公司(以下简称卖方)就150TPH化水系统设备工程签订本技术协议,该技术协议与双方签订的合同(合同编号:)具有同等法律效力。 1总体说明 本协议规定了水处理工程除合同规定以外的技术细节。 2工程界限与设计基础条件 2.1工程界限 化水车间厂房轴线以外1.0米为界限,即从多介质过滤器入口的化水车间轴线外1.0米处至除盐水泵出口化水车间轴线外1.0米处。 卖方负责总体平面设计。 2.2界区内卖方工程内容 2.2.1工程界区内化水设备涉及的设备、安装及调试 2.2.2工程界区内设备供电工程 2.2.3工程界区内仪表和控制工程 2.3买方工程内容 2.3.1电源接入厂房,安装空气开关。如果是双路供电系统,安装双路均衡和切换装 置 2.3.2土建工程和预埋管道工程、厂房内外埋管道工程、墙壁预埋工程。所有预埋 管道必须有衬胶或衬塑防腐 2.3.3采暖通风空调工程 2.3.4生活、消防和排水工程 2.3.5照明、防雷和设备供电接地工程 2.3.6提供加热蒸汽

2.3.7提供压缩空气 2.3.8厂房内外预埋管道工程 2.4工程界区的边界条件 2.4.1给水流量:>300m3/hr 2.4.2电源:380V/220V,50HZ,功率,设计联络会确认 2.4.3调试化学药品:由乙方提供 2.4.4水质分析仪器药品等由买方提供 2.5设计基础条件 系统应适用于黄河水或地下水或二者混合水 2.6工程规模 系统总产水量:150TPH 2.7产水水质 总硬度:≈0 μmol/L SiO2:≤20μg/l 电导率:≤0.2μs/cm 3配置清单 设备配置清单见附件1 4技术图纸 卖方应合同签订7日内向土建设计单位和买方提供必要的技术参数和图纸 5设备验收 5.1设备制造完成后双方根据《设备配置清单》进行到货验收 5.2设备正常连续运转24小时后双方对设备进行整体验收,验收标准如下: 5.2.1超滤产水SDI<3,三、四期改造后总产量≥400吨/小时 5.2.2双级反渗透系统脱盐率>99%,产水电导率>10μs/cm,产量≥170吨/小时 5.2.3EDI产水符合本技术协议2.7要求,产量≥150吨/小时 6质量保证 6.1设备系统质保期为安装调试完成之日起一年整。其中超滤膜及EDI组件质保期为 安装调试完成之日起三年整。

锅炉给水泵技术(1)汇总

锅炉给水泵技术书 一、总则 二、设备安装及使用条件 三、给水泵技术参数表及要求 四、供货范围及要求 五、锅炉给水泵技术性能要求 六、设计、制造及验收采用的标准 七、技术资料文件交付 八、安装及调试 九、其它 一、总则: 1.1本技术协议适用垃圾焚烧发电厂工程,它包括泵本体及附件的功能设

计、结构、性能、安装和试验等方面的技术要求。 1.2本技术协议书提出的是最低限度的技术要求,并未对一切技术细节做出规定,也未充分引述有关标准和规范的条文。乙方应保证提供符合本技术协议书和最新工业标准的优质产品。 1.3本技术协议书所使用的标准,如遇与乙方所执行的标准不一致时,按较高的标准执行。 1.4如果乙方没有以书面形式对本技术协议书的条文提出异议(异议必须经过甲方认可),甲方可以认为乙方提供的产品完全满足本技术协议书的要求。 1.5本技术协议书经甲、乙方双方共同确认并签字后作为订货合同的技术附件,与合同正文有同等法律效力。 二、设备安装及使用条件 2.1 厂址条件 2.1.1 焚烧发电厂建设地点 2.1.1 焚烧厂地面标高35.00~38.00m米 2.1.2 常年平均气温1 3.12℃ 2.1.3 极端最高气温41.1℃ 2.1.4 绝对最低气温-20.7℃ 2.1.5 平均相对湿度49% 2.1.6 抗震设防烈度7度 2.1.7 累年平均风速 2.9m/s 2.1.8 历年最大风速25.3m/s

2.2 设备安装地点汽机房内 三、各水泵技术参数表及要求 扬程:660米 流量:35m3/h 输送介质温度:130℃ 要求:1、可变频调速 2、使用材料抗气蚀能力强 3、给水泵流量为最小流量时,扬程不得低于600m 4、需要提供总装图 5、所需冷却水压力不得高于0.35MPa 附表一:给水泵技术参数表及要求

浅析300MW火力发电厂电动给水泵变频节能改造技术 常惠伟

浅析300MW火力发电厂电动给水泵变频节能改造技术常惠伟 发表时间:2017-12-31T11:49:06.773Z 来源:《电力设备》2017年第26期作者:常惠伟 [导读] 摘要:火力发电厂各种转动机械的电量消耗偏大特别是6KV转动设备是厂用电率居高不下的根本原因,作为发电厂主要设备的电动给水泵,早期标准设计裕量都偏大,在现在高压变频技术日益成熟,电泵变频改造成为降低水泵耗电率的首选。 (中铝宁夏能源集团马莲台电厂宁夏灵武 750411) 摘要:火力发电厂各种转动机械的电量消耗偏大特别是6KV转动设备是厂用电率居高不下的根本原因,作为发电厂主要设备的电动给水泵,早期标准设计裕量都偏大,在现在高压变频技术日益成熟,电泵变频改造成为降低水泵耗电率的首选。本文通过某发电厂实施电泵变频改造的节能数据分析的结论,对同类设备的改造可以作为参考,提出一些改进的建议,实现节能高效的目标。 关键词:给水泵;变频改造;节能技术 一、电动给水泵运行现状 330MW机组在过去的设计基本都采用的是电力行业DL/T892-2004标准,设计裕量偏大。现在基本都采用IEC45-1-1991标准设计,给水泵的设计裕量相对偏低。电动给水泵采用液力耦合器调速控制的模式,当机组负荷较高时,液力耦合器能效较高。当负荷较低时,液力耦合器自身损耗急剧增加。近几年高压变频器技术的不断发展,成熟、能满足用户需求的大功率变频器已经进入市场并得到检验,且高压变频器在通过降低电源频率进行调速的过程中,自身能效水平较高,完全可以解决在负荷较低情况下电动给水泵转速低进而效率较低的问题。近几年机组负荷率较低,330MW机组在200MW左右运行时,其电泵的转速为4200转左右,给水泵的电机转速1490转, 泵轮转速约为6258,则其转速比为67%,液力偶合器的效率约为67%,330MW机组采用液力偶合器调节的电动给水泵组其200MW左右运行时,损耗高达34%。 根据比转速和该厂330MW机组实际运行参数统计计算出,该厂在不同负荷下的液力偶合器的效率。在330MW时其效率最高才能达到85%左右,其损耗达到了15%左右,包括设计裕量过大、液力偶合器效率低等因素造成。 怎么才能提高给水泵组的效率,有如下几种办法: 1、采用小汽轮机调速,采用小汽轮机调速改造效果评估较难,不同专家算出的结果也是不同的,其改造工程量大,费用高,不建议轻易使用。 2、采用电泵变频调速,采用电泵变频改造后的系统简单,费用低、节能效果好,是电动液力偶合器调节给水泵提高效率的最简单的改造方案。 二、电动液力偶合器调节给水泵变频改造的方案选择 电动液力偶合器调节给水泵变频改造关键的核心是液力偶合器如何改,该厂已经改造了几台液力偶合器,现介绍一下。 电泵电机有工频和变频两种功能,液力偶合器也可分为工频运行和变频运行两种模式。 液力偶合器原理:液力偶合器电机轴和大齿轮相连,大齿轮通过小齿轮带动泵轮轴旋转,泵轮轴与给水泵轴相连,正常运行时通过勺管调节泵轮和涡轮里传动的油量来调速。当泵轮和涡轮中油量较小时,泵轮和涡轮内的油量不满,造成液力偶合器的效率低,当油量越多,泵轮和涡轮内空余的空间小,热量损失就小。变频运行时,由电机调节转速,液力偶合器的勺管全开,泵轮和涡轮腔室里的充满了润滑油,泵轮和涡轮完全成为一个刚性联轴器,这时液力偶合器就成为增速器。工频运行还和改造前一样,电机转速恒定,通过勺管调节转速运行。 三、改造方案说明 1、保守方案 改造方案就是保留的液力偶合器的泵轮和涡轮,在变频运行时,让勺管开度100%,这样液力偶合器的效率最高,因其最少有3%的滑差,加上增速齿轮及其它各种损失,最高其效率能达到93%左右,最高负荷时偶合器的效率能提高8%左右。工频功能就是当变频故障后,让液力偶合器恢复成勺管调节方式运行。该厂#1机组2台给水泵液力偶合器就采用了保守思路的方案进行了改造。后期又采用第二种方案进行优化改造。 液力偶合器中因为有泵轮、滑动轴承,内部有二台润滑油泵和一台工作油泵,工作油泵和一台润滑油泵共用一根轴,通过泵轮上轴上的齿轮传动。其额定转速和电机额定转速相同,改变频后因电机转速下降,其转速下降,无法满足润滑油和工作油提供额定的流量和压力,必须改造。改造方案有多种,目前了解到的有3种方案。 2、追求节能量最大化: 电泵电机只有变频功能,无工频功能。变频器的品牌必须选好。 该厂#2机组2台给水泵液力偶合器就采用了此方案进行了改造,将液力偶合器的泵轮和涡轮拆除,将两根轴相连,泵轮轴与电机轴连接,液力偶合器变为增速器,可以通过电机调速因为取消了泵轮和涡轮,可以取消工作油系统(工作油泵、管路、工作油冷却器),系统简单,维护量小,设备节能量高,液力偶合器变成了增速器其没有滑差,液力偶合器的效率达到最大。 第三种方案,是将液力偶合器直接去除,将其更换成增速器。新电厂可以直接按照增速器来设计,已发电电厂可以订购一台新增速器,其地脚螺栓尺寸、中心距,对轮连接的尺寸和中心距与液力偶合器一模一样,然后设计润滑油系统,配置二台润滑油泵。 3、前置泵的改造方案选择:前置泵和给水泵为同轴电机,当电机变频在低转速下运行时因转速变低,其出口压力能否满足给水泵最小必需汽蚀余量,是前置泵改造的前提。根据前置泵出厂技术参数资料计算,可以满足要求,但大部份的电厂水泵已经运行了多年,性能已经偏离设计值,会影响到前置泵的运行,如果采用同轴会造成给水泵入口汽蚀,建议将前置泵的壳体保留,转子和叶轮更换一个方向,然后转动方向反向转动即可。 四、改造后设备的节能量 1、计算说明及计算公式: 1.1功率因素选择:电泵改造前其工频运行时,其功率因数根据实测电能量计算,负荷从190MW至330MW变化时,其功率因数自0.82逐步上升至0.895; 电泵变频运行时当机组负荷从190MW至330MW变化时,变频器频率基本在35Hz至45Hz之间变化,变频器输入功率因数基本维持在

相关主题