当前位置:
文档之家› LED用蓝宝石基板(衬底)详细介绍
LED用蓝宝石基板(衬底)详细介绍
蓝宝石切面图图
晶体结构图上视图பைடு நூலகம்
晶体结构侧视图
Al2O3分之结构图
蓝宝石结晶面示意图
最常用来做GaN磊晶的是C面(0001)这个不具极性的面,所以GaN的极性 将由制程决定 (a)图从C轴俯看 (b)图从C轴侧看
蓝宝石(Al2O3)特性表 蓝宝石(Al2O3)特性表 (Al2O3)
分子式 密度 晶体结构 晶格常数 莫氏硬度 熔点 沸点 热膨胀系数 比热 热导率 折射率 dn/dt 透光特性 介电常数
4 蓝宝石基板应用种类 广大外延片厂家使用的蓝宝石基片分为三种:
1:C-Plane蓝宝石基板 这是广大厂家普遍使用的供GaN生长的蓝宝石基板面.这主要是因为 蓝宝石晶体沿C轴生长的工艺成熟、成本相对较低、物化性能稳定,在 C面进行磊晶的技术成熟稳定. 2:R-Plane或M-Plane蓝宝石基板 主要用来生长非极性/半极性面GaN外延薄膜,以提高发光效率.通常 在蓝宝石基板上制备的GaN外延膜是沿c轴生长的,而c轴是GaN的极性 轴,导致GaN基器件有源层量子阱中出现很强的内建电场,发光效率 会因此降低,发展非极性面GaN外延,克服这一物理现象,使发光效 率提高。 3:图案化蓝宝石基板(Pattern Sapphire Substrate简称PSS) 以成长(Growth)或蚀刻(Etching)的方式,在蓝宝石基板上设计制作 出纳米级特定规则的微结构图案藉以控制LED之输出光形式,并可同 时减少生长在蓝宝石基板上GaN之间的差排缺陷,改善磊晶质量,并 提升LED内部量子效率、增加光萃取效率。
图9:纳米图案化蓝宝石基板图
3:R-Plane或 Plane蓝宝石基板 3:R-Plane或M-Plane蓝宝石基板
通常,C面蓝宝石衬底上生长的GaN薄膜是沿着其极性轴即c轴方向生长的, 薄膜具有自发极化和压电极化效应,导致薄膜内部(有源层量子阱)产生强 大的内建电场,(Quantum Confine Stark Effect, QCSE;史坦克效应)大 大地降低了GaN薄膜的发光效率. 在一些非C面蓝宝石衬底(如R面或M 面) 和其他一些特殊衬底(如铝酸锂;LiAlO2 )上生长的GaN薄膜是非极性和半极 性的,上述由极化场引起的在发光器件中产生的负面效应将得到部分甚至 完全的改善.传统三五族氮化物半导体均成长在c-plane 蓝宝石基板上,若 把这类化合物成长于R-plane 或M-Plane上,可使产生的内建电场平行于 磊晶层,以增加电子电洞对复合的机率。因此,以氮化物磊晶薄膜为主的 LED结构成长R-plane 或M-Plane蓝宝石基板上,相比于传统的C面蓝宝石 磊晶,将可有效解决LED内部量子效率效率低落之问题,并增加元件的发光 强度。最新消息据称非极性LED能使白光的发光效率提高两倍. 由于无极性GaN具有比传统c轴GaN更具有潜力来制作高效率元件,而许多 国际大厂与研究单位都加大了对此类磊晶技术的研究与生产.因此对于Rplane 或M-Plane 蓝宝石基板的需求与要求也是相应地增加. 下图为半极性和无极性面的简单示意图
2:图案化蓝宝石基板 2:图案化蓝宝石基板 Substrate简称 简称PSS) (Pattern Sapphire Substrate简称PSS)
以蚀刻(在蓝宝石C面干式蚀刻/湿式蚀刻)的方式,在蓝宝石基板上设计制 作出微米级或纳米级的具有微结构特定规则的图案,藉以控制LED之输 出光形式(蓝宝石基板上的凹凸图案会产生光散射或折射的效果增加 光的取出率),同时GaN薄膜成长于图案化蓝宝石基板上会产生横向磊 晶的效果,减少生长在蓝宝石基板上GaN之间的差排缺陷,改善磊晶质 量,并提升LED内部量子效率、增加光萃取效率。与成长于一般蓝宝 石基板的LED相比,亮度增加了70%以上.目前台湾生产图案化蓝宝石有 中美矽晶、合晶、兆晶,兆达.蓝宝石基板中2/4英寸是成熟产品,价 格逐渐稳定,而大尺寸(如6/8英寸)的普通蓝宝石基板与2英寸图案化 蓝宝石基板处于成长期,价格也较高,其生产商也是主推大尺寸与图案 化蓝宝石基板,同时也积极增加产能.目前大陆还没有厂家能生产出图 案化蓝宝石基板.
A:台湾兆晶科技股份有限公司C面2英寸蓝宝石基板技术参数 A:台湾兆晶科技股份有限公司C 台湾兆晶科技股份有限公司
项目 Item 规格 Specifications
材料 Material 晶向 Orientation 直径 Dismeter 厚度 Thickness 总厚度偏差 TTV 翘曲度 BOW
定位面方向 Primary Flat Location 定位边长 Primary Flat Length 正面 Front Surface 表面粗糙度 Surface Roughness 背面 包装 Backside Package
B:台湾中美矽晶制品制品股份有限公司C B:台湾中美矽晶制品制品股份有限公司C面2英寸蓝宝石基板技术参数 台湾中美矽晶制品制品股份有限公司
柴氏拉晶法(Czochralski method)之原理示意图
图6
凯氏長晶法(Kyropoulos method)之原理示意图
图7
3 蓝宝石衬底加工流程
蓝宝石基片的原材料是晶棒,晶棒由蓝宝石晶 体加工而成.其相关制造流程如下: 蓝宝石晶体 晶棒
晶棒
基片
蓝宝石晶棒制造工艺流程
蓝宝石晶棒加工流程
机械加工
晶体
晶棒
长晶: 利用长晶炉生长尺寸大且高品质的单晶蓝宝石晶体 定向: 确保蓝宝石晶体在掏棒机台上的正确位置,便于掏棒加工 掏棒: 以特定方式从蓝宝石晶体中掏取出蓝宝石晶棒 滚磨: 用外圆磨床进行晶棒的外圆磨削,得到精确的外圆尺寸精度 品检: 确保晶棒品质以及以及掏取后的晶棒尺寸与方位是否合客户规格
项目 Item 规格 Specifications
材料 Material 晶向 Orientation 对M轴偏离角度 Off-set Angle toward M-axis 对A轴偏离角度 Off-set Angle toward A-axis 直径 Dismeter 厚度 Thickness 总厚度偏差 TTV 表面总平整度TIR 弯曲度 翘曲度 WARP BOW
高纯度(> 99。996%) 单晶Al2O3, C轴(0001)±0.3° 50.8±0.2mm 330μm/430μm±25μm <10μm <10μm A面(11-20)±0.5 ° 16±1.2mm epi-ready polished (外延开盒即用) Ra<0.3nm Ra=0.5~1.2μm 洁净室内真空冲氮包装
1:C-Plane蓝宝石基板 1:C-Plane蓝宝石基板
C-Plane蓝宝石基板是普遍使用的蓝宝石基板.1993年日本的赤崎勇教授 与当时在日亚化学的中村修二博士等人,突破了InGaN 与蓝宝石基板 晶格不匹配(缓冲层)、p 型材料活化等等问题后,终于在1993 年 底日亚化学得以首先开发出蓝光LED.以后的几年里日亚化学以蓝宝石 为基板,使用InGaN材料,通过MOCVD 技术并不断加以改进蓝宝石基板 与磊晶技术,提高蓝光的发光效率,同时1997年开发出紫外LED,1999 年蓝紫色LED样品开始出货,2001年开始提供白光LED。从而奠定了日 亚化学在LED领域的先头地位. 台湾紧紧跟随日本的LED技术,台湾LED的发展先是从日本购买外延片加工, 进而买来MOCVD机台和蓝宝石基板来进行磊晶,之后台湾本土厂商又对 蓝宝石晶体的生长和加工技术进行研究生产,通过自主研发,取得LED 专利授权等方式从而实现蓝宝石晶体,基板,外延片的生产,外延片的 加工等等自主的生产技术能力,一步一步奠定了台湾在LED上游业务中 的重要地位. 目前大部分的蓝光/绿光/白光LED产品都是以日本台湾为代表的使用蓝宝 石基板进行MOCVD磊晶生产的产品.使得蓝宝石基板有很大的普遍性, 以美国Cree公司使用SiC为基板为代表的LED产品则跟随其后.
Al2O3 3.95-4.1克 3.95-4.1克/立方厘米 六方晶格 a=4.785Å , c=12.991Å 9 2045℃ 2045℃ 3000℃ 3000℃ 5.8× 5.8×10 -6 /K 0.418W.s/g/k 100℃) 25.12W/m/k (@ 100℃) no =1.768 ne =1.760 13x10 -6 /K(@633nm) (0.3~ T≈80% (0.3~5μm) 11.5(∥c), 11.5(∥c), 9.3(⊥c) (仅次于钻石:10) (仅次于钻石:10) 仅次于钻石
LED蓝宝石基板介绍 1:蓝宝石详细介绍 1:蓝宝石详细介绍
蓝宝石的组成为氧化铝(Al2O3),是由三个氧原子和两个铝原子以共价 键型式结合而成,其晶体结构为六方晶格结构.它常被应用的切面有APlane,C-Plane及R-Plane.由于蓝宝石的光学穿透带很宽,从近紫外光 (190nm)到中红外线都具有很好的透光性.因此被大量用在光学元件、红 外装置、高强度镭射镜片材料及光罩材料上,它具有高声速、耐高温、 抗腐蚀、高硬度、高透光性、熔点高(2045℃)等特点,它是一种相当 难加工的材料,因此常被用来作为光电元件的材料。目前超高亮度白/蓝 光LED的品质取决于氮化镓磊晶(GaN)的材料品质,而氮化镓磊晶品质则 与所使用的蓝宝石基板表面加工品质息息相关,蓝宝石(单晶Al2O3 )C面 与Ⅲ-Ⅴ和Ⅱ-Ⅵ族沉积薄膜之间的晶格常数失配率小,同时符合GaN 磊 晶制程中耐高温的要求,使得蓝宝石晶片成为制作白/蓝/绿光LED的关键 材料. 下图则分别为蓝宝石的切面图;晶体结构图上视图;晶体结构侧视图; Al2O3分之结构图;蓝宝石结晶面示意图
2 蓝宝石晶体的生长方法 蓝宝石晶体的生长方法常用的有两种: 1:柴氏拉晶法 柴氏拉晶法(Czochralski method),简称CZ法.先将原料加热至熔点后熔 柴氏拉晶法 化形成熔汤,再利用一单晶晶种接触到熔汤表面,在晶种与熔汤的固液界面 上因温度差而形成过冷。于是熔汤开始在晶种表面凝固并生长和晶种相同晶 体结构的单晶。晶种同时以极缓慢的速度往上拉升,并伴随以一定的转速旋 转,随着晶种的向上拉升,熔汤逐渐凝固于晶种的液固界面上,进而形成一 轴对称的单晶晶锭. 2:凯氏长晶法 凯氏长晶法(Kyropoulos method),简称KY法,大陆称之为泡生法.其原理 凯氏长晶法 与柴氏拉晶法(Czochralskimethod)类似,先将原料加热至熔点后熔化形成熔 汤,再以单晶之晶种(SeedCrystal,又称籽晶棒)接触到熔汤表面,在晶种与 熔汤的固液界面上开始生长和晶种相同晶体结构的单晶,晶种以极缓慢的速 度往上拉升,但在晶种往上拉晶一段时间以形成晶颈,待熔汤与晶种界面的 凝固速率稳定后,晶种便不再拉升,也没有作旋转,仅以控制冷却速率方式 来使单晶从上方逐渐往下凝固,最后凝固成一整个单晶晶碇. 两种方法的晶体生长示意图如下: