当前位置:文档之家› 蓝宝石衬底

蓝宝石衬底

蓝宝石衬底展开对于制作LED芯片来说,衬底材料的选用是首要考虑的问题。

应该采用哪种合适的衬底,需要根据设备和LED器件的要求进行选择。

目前市面上一般有三种材料可作为衬底:〃蓝宝石(Al2O3)、硅(Si)、碳化硅(Sic)蓝宝石衬底通常,GaN基材料和器件的外延层主要生长在蓝宝石衬底上。

蓝宝石衬底有许多的优点:首先,蓝宝石衬底的生产技术成熟、器件质量较好;其次,蓝宝石的稳定性很好,能够运用在高温生长过程中;最后,蓝宝石的机械强度高,易于处理和清洗。

因此,大多数工艺一般都以蓝宝石作为衬底。

使用蓝宝石作为衬底也存在一些问题,例如晶格失配和热应力失配,这会在外延层中产生大量缺陷,同时给后续的器件加工工艺造成困难。

蓝宝石是一种绝缘体,常温下的电阻率大于1011Ω〃cm,在这种情况下无法制作垂直结构的器件;通常只在外延层上表面制作n型和p型电极(如图1所示)。

在上表面制作两个电极,造成了有效发光面积减少,同时增加了器件制造中的光刻和刻蚀工艺过程,结果使材料利用率降低、成本增加。

由于P型GaN掺杂困难,当前普遍采用在p型GaN上制备金属透明电极的方法,使电流扩散,以达到均匀发光的目的。

但是金属透明电极一般要吸收约30%~40%的光,同时GaN基材料的化学性能稳定、机械强度较高,不容易对其进行刻蚀,因此在刻蚀过程中需要较好的设备,这将会增加生产成本。

蓝宝石的硬度非常高,在自然材料中其硬度仅次于金刚石,但是在LED器件的制作过程中却需要对它进行减薄和切割(从400μm减到100μm左右)。

添置完成减薄和切割工艺的设备又要增加一笔较大的投资。

蓝宝石的导热性能不是很好(在100℃约为25W/(m〃K))。

因此在使用LED器件时,会传导出大量的热量;特别是对面积较大的大功率器件,导热性能是一个非常重要的考虑因素。

为了克服以上困难,很多人试图将GaN光电器件直接生长在硅衬底上,从而改善导热和导电性能。

硅衬底目前有部分LED芯片采用硅衬底。

硅衬底的芯片电极可采用两种接触方式,分别是L接触(Laterial-contact ,水平接触)和 V接触(Vertical-contact,垂直接触),以下简称为L型电极和V型电极。

通过这两种接触方式,LED芯片内部的电流可以是横向流动的,也可以是纵向流动的。

由于电流可以纵向流动,因此增大了LED的发光面积,从而提高了LED的出光效率。

因为硅是热的良导体,所以器件的导热性能可以明显改善,从而延长了器件的寿命。

碳化硅衬底碳化硅衬底(美国的CREE公司专门采用SiC材料作为衬底)的LED芯片电极是L型电极,电流是纵向流动的。

采用这种衬底制作的器件的导电和导热性能都非常好,有利于做成面积较大的大功率器件。

采用碳化硅衬底的LED芯片如图2所示。

[url=/upload/zhishi/200803/20080329082643z5.jpg]图2 采用蓝宝石衬底与碳化硅衬底的LED芯片[/url]碳化硅衬底的导热性能(碳化硅的导热系数为490W/(m〃K))要比蓝宝石衬底高出10倍以上。

蓝宝石本身是热的不良导体,并且在制作器件时底部需要使用银胶固晶,这种银胶的传热性能也很差。

使用碳化硅衬底的芯片电极为L型,两个电极分布在器件的表面和底部,所产生的热量可以通过电极直接导出;同时这种衬底不需要电流扩散层,因此光不会被电流扩散层的材料吸收,这样又提高了出光效率。

但是相对于蓝宝石衬底而言,碳化硅制造成本较高,实现其商业化还需要降低相应的成本。

三种衬底的性能比较前面的内容介绍的就是制作LED芯片常用的三种衬底材料。

这三种衬底材料的综合性能比较可参见表1。

除了以上三种常用的衬底材料之外,还有GaAS、AlN、ZnO等材料也可作为衬底,通常根据设计的需要选择使用。

衬底材料的评价1.衬底与外延膜的结构匹配:外延材料与衬底材料的晶体结构相同或相近、晶格常数失配小、结晶性能好、缺陷密度低;2.衬底与外延膜的热膨胀系数匹配:热膨胀系数的匹配非常重要,外延膜与衬底材料在热膨胀系数上相差过大不仅可能使外延膜质量下降,还会在器件工作过程中,由于发热而造成器件的损坏;3.衬底与外延膜的化学稳定性匹配:衬底材料要有好的化学稳定性,在外延生长的温度和气氛中不易分解和腐蚀,不能因为与外延膜的化学反应使外延膜质量下降;4.材料制备的难易程度及成本的高低:考虑到产业化发展的需要,衬底材料的制备要求简洁,成本不宜很高。

衬底尺寸一般不小于2英寸。

当前用于GaN基LED的衬底材料比较多,但是能用于商品化的衬底目前只有两种,即蓝宝石和碳化硅衬底。

其它诸如GaN、Si、ZnO衬底还处于研发阶段,离产业化还有一段距离。

氮化镓:用于GaN生长的最理想衬底是GaN单晶材料,可以大大提高外延膜的晶体质量,降低位错密度,提高器件工作寿命,提高发光效率,提高器件工作电流密度。

但是制备GaN体单晶非常困难,到目前为止还未有行之有效的办法。

氧化锌:ZnO之所以能成为GaN外延的候选衬底,是因为两者具有非常惊人的相似之处。

两者晶体结构相同、晶格识别度非常小,禁带宽度接近(能带不连续值小,接触势垒小)。

但是,ZnO作为GaN外延衬底的致命弱点是在GaN外延生长的温度和气氛中易分解和腐蚀。

目前,ZnO半导体材料尚不能用来制造光电子器件或高温电子器件,主要是材料质量达不到器件水平和P型掺杂问题没有得到真正解决,适合ZnO基半导体材料生长的设备尚未研制成功。

蓝宝石:用于GaN生长最普遍的衬底是Al2O3。

其优点是化学稳定性好,不吸收可见光、价格适中、制造技术相对成熟。

导热性差虽然在器件小电流工作中没有暴露明显不足,却在功率型器件大电流工作下问题十分突出。

碳化硅:SiC作为衬底材料应用的广泛程度仅次于蓝宝石,目前还没有第三种衬底用于GaNLED的商业化生产。

SiC衬底有化学稳定性好、导电性能好、导热性能好、不吸收可见光等,但不足方面也很突出,如价格太高,晶体质量难以达到Al2O3和Si那么好、机械加工性能比较差,另外,SiC衬底吸收380纳米以下的紫外光,不适合用来研发380纳米以下的紫外LED。

由于SiC衬底有益的导电性能和导热性能,可以较好地解决功率型GaNLED器件的散热问题,故在半导体照明技术领域占重要地位。

同蓝宝石相比,SiC与GaN外延膜的晶格匹配得到改善。

此外,SiC具有蓝色发光特性,而且为低阻材料,可以制作本报讯 10月11日上午,天通公司晶体事业部的高洁净级蓝宝石衬底加工车间,来自北京的专家正在对蓝宝石衬底质量管理体系进行审查。

这是天通4英寸LED蓝宝石衬底材料项目今年试产成功后,首次接受ISO质量体系审查。

“目前,该项目的试生产已经完成,合格率达80%以上。

”公司总裁助理、LED晶体事业群负责人段金柱告诉记者,这段时间企业正在积极进行生产调试,争取早日进入规模化量产。

据介绍,蓝宝石晶体材料市场前景十分广阔。

不仅能应用于LED产业,还可以作为微电子、光电子器件的外延基片,传感器(温度、压力)敏感元件的衬底,可以做成不同尺寸和型面的单模、双模、多模光电窗口和整流罩,应用于军工领域,可以作为各种耐压、耐磨件、轴承、密封件等用于各种精密装备中,还可应用于高端手表表面、手机屏幕及便携式电子设备屏幕等。

然而国内在单晶生产工艺上日渐成熟,但在后续精密加工技术上仍与国外差距较大,大尺寸高端产品还是主要依赖于进口。

2010年,天通经过充分的论证,积极布局LED蓝宝石衬底生产项目。

“公司一直致力于关键基础材料的开发制造,在材料生产研发领域有着独特的优势,是全国最大的磁性材料生产企业之一,主要客户有飞利浦、欧司朗、三星、LG、索尼、松下等,而蓝宝石是LED产业的关键上游材料,高端客户资源与磁性材料重叠,公司具有客户资源平台发展优势。

”段金柱说,两年来,天通在引进日本先进蓝宝石长晶技术及衬底切磨抛技术的基础上,进行了一系列技术创新及超越,形成了一套具有国际先进水平的大尺寸、高品质蓝宝石衬底生产线,并利用公司客户资源平台积极拓展欧、美、日、韩高端市场。

在天通公司的晶体生产车间,20多台从日本引进的长晶炉正在运行,“为了掌握好这一关键技术,公司专门选派了7位技术骨干去日本学习,并专门聘请了2位国际知名专家常住海宁,帮助我们一同攻克技术难关。

”段金柱介绍。

在生产车间外的陈列柜里,摆放着天通自主生产的高品质70千克蓝宝石晶锭及衬底。

“从2英寸到6英寸不同型号的衬底,天通均能自主生产,尤其是6英寸衬底成功填补了我国大尺寸LED 蓝宝石衬底国产化的空白。

”段金柱告诉记者。

随着生产工艺的日渐成熟,天通的LED蓝宝石衬底产品合格率不断提升,其产品也获得了市场的认可。

就在采访的当天,段金柱就接到了来自河北的一位重要客户的来电,被告知其产品在试样中顺利通过。

“目前,我们的产品已得到4家客户的认可,其中包括军工企业,也有国外的特种产品生产企业,此外,之前送样的国内外高端客户正在陆续进行产品认证中。

”段金柱表示。

今年以来,蓝宝石衬底生产设备及衬底材料产品价格大幅下降,天通公司重新调整了该项目的产能以及经济效益,在原投资3.6亿元规模不变的前提下,通过技术创新及设备的优化升级,大幅增大了产能,将该项目升级为“年产115万片4英寸LED蓝宝石衬底技改项目”。

项目建成后,预计新增年均销售收入2.97亿,相当于2011年公司营业收入的22%。

LED用蓝宝石基板(衬底)简介.2.1 CZ法(直拉法) 112.2.2 泡生法(Kyropoulos;KY法) 122.2.3 热交换器长晶法(HEM) 132.2.4 导模法 (Edge-defined Film-fed Growth;EFG)一、蓝宝石介绍蓝宝石的组成为氧化铝(Al2O3),是由三个氧原子和两个铝原子以共价键型式结合而成,其晶体结构为六方晶格结构。

它常被应用的切面有A-Plane,C-Plane及R-Plane.由于蓝宝石的光学穿透带很宽,从近紫外光(190nm)到中红外线都具有很好的透光性.因此被大量用在光学元件、红外装置、高强度镭射镜片材料及光罩材料上,它具有高声速、耐高温、抗腐蚀、高硬度、高透光性、熔点高(2045℃)等特点,它是一种相当难加工的材料,因此常被用来作为光电元件的材料。

目前超高亮度白/蓝光LED的品质取决于氮化镓磊晶(GaN)的材料品质,而氮化镓磊晶品质则与所使用的蓝宝石基板表面加工品质息息相关,蓝宝石(单晶Al2O3 )C面与Ⅲ-Ⅴ和Ⅱ-Ⅵ族沉积薄膜之间的晶格常数失配率小,同时符合GaN 磊晶制程中耐高温的要求,使得蓝宝石芯片成为制作白/蓝/绿光LED 的关键材料。

下图则分别为蓝宝石的切面图;晶体结构图上视图;晶体结构侧视图;Al2O3分之结构图;蓝宝石结晶面示意图:最常用来做GaN磊晶的是C面(0001)这个不具极性的面,所以GaN的极性将由制程决定(a)图从C轴俯看 (b)图从C轴侧看二、蓝宝石晶体的生长方法蓝宝石晶体的生长方法常用的有两种:1、柴氏拉晶法(Czochralski method),简称CZ法.先将原料加热至熔点后熔化形成熔汤,再利用一单晶晶种接触到熔汤表面,在晶种与熔汤的固液界面上因温度差而形成过冷。

相关主题