高考物理动能与动能定理试题经典及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,圆弧轨道AB是在竖直平面内的14圆周,B点离地面的高度h=0.8m,该处切线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求:(1)圆弧轨道的半径(2)小球滑到B点时对轨道的压力.【答案】(1)圆弧轨道的半径是5m.(2)小球滑到B点时对轨道的压力为6N,方向竖直向下.【解析】(1)小球由B到D做平抛运动,有:h=12gt2x=v B t解得:10410/220.8Bgv x m sh==⨯=⨯A到B过程,由动能定理得:mgR=12mv B2-0解得轨道半径R=5m(2)在B点,由向心力公式得:2Bv N mg mR -=解得:N=6N根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动.2.如图所示,斜面高为h,水平面上D、C两点距离为L。
可以看成质点的物块从斜面顶点A处由静止释放,沿斜面AB和水平面BC运动,斜面和水平面衔接处用一长度可以忽略不计的光滑弯曲轨道连接,图中没有画出,不计经过衔接处B点的速度大小变化,最终物块停在水平面上C点。
已知物块与斜面和水平面间的滑动摩擦系数均为μ。
请证明:斜面倾角θ稍微增加后,(不改变斜面粗糙程度)从同一位置A 点由静止释放物块,如图中虚线所示,物块仍然停在同一位置C 点。
【答案】见解析所示 【解析】 【详解】设斜面长为L ',倾角为θ,物块在水平面上滑动的距离为S .对物块,由动能定理得:cos 0mgh mg L mgS μθμ-⋅'-=即:cos 0sin hmgh mg mgS μθμθ-⋅-= 0tan hmgh mgmgS μμθ--= 由几何关系可知:tan hL S θ=- 则有:()0mgh mg L S mgS μμ---=0mgh mgL μ-=解得:hL μ=故斜面倾角θ稍微增加后,(不改变斜面粗糙程度)从同一位置A 点由静止释放物块,如图中虚线所示,物块仍然停在同一位置C 点。
3.如图所示,AB 是一倾角为θ=37°的绝缘粗糙直轨道,滑块与斜面间的动摩擦因数=0.30μ,BCD 是半径为R =0.2m 的光滑圆弧轨道,它们相切于B 点,C 为圆弧轨道的最低点,整个空间存在着竖直向上的匀强电场,场强E = 4.0×103N/C ,质量m = 0.20kg 的带电滑块从斜面顶端由静止开始滑下.已知斜面AB 对应的高度h = 0.24m ,滑块带电荷q = -5.0×10-4C ,取重力加速度g = 10m/s 2,sin37°= 0.60,cos37°=0.80.求:(1)滑块从斜面最高点滑到斜面底端B 点时的速度大小;(2)滑块滑到圆弧轨道最低点C 时对轨道的压力. 【答案】(1) 2.4m/s (2) 12N 【解析】 【分析】(1)滑块沿斜面滑下的过程中,根据动能定理求解滑到斜面底端B 点时的速度大小; (2)滑块从B 到C 点,由动能定理可得C 点速度,由牛顿第二定律和由牛顿第三定律求解. 【详解】(1)滑块沿斜面滑下的过程中,受到的滑动摩擦力:()cos370.96N f mg qE μ=+︒=设到达斜面底端时的速度为v 1,根据动能定理得:()211sin 372h mg qE h fmv +-=o 解得:v 1=2.4m/s(2)滑块从B 到C 点,由动能定理可得:()()222111=1cos3722m mg q v E v m R +︒-- 当滑块经过最低点时,有:()2N 2F mg qE v m R-+= 由牛顿第三定律:N N 11.36N F F ==,方向竖直向下. 【点睛】本题是动能定理与牛顿定律的综合应用,关键在于研究过程的选择.4.如图甲所示,长为4 m 的水平轨道AB 与半径为R =0.6 m 的竖直半圆弧轨道BC 在B 处相连接。
有一质量为1 kg 的滑块(大小不计),从A 处由静止开始受水平向右的力F 作用,F 随位移变化的关系如图乙所示。
滑块与水平轨道AB 间的动摩擦因数为μ=0.25,与半圆弧轨道BC 间的动摩擦因数未知,g 取10 m/s 2。
求: (1)滑块到达B 处时的速度大小;(2)若到达B 点时撤去F ,滑块沿半圆弧轨道内侧上滑,并恰好能到达最高点C ,滑块在半圆弧轨道上克服摩擦力所做的功。
【答案】(1)210 m/s 。
(2)5 J 。
【解析】 【详解】(1)对滑块从A 到B 的过程,由动能定理得:2113312B F x F x mgx mv μ--=, 即21202-101-0.251104J=12B v ⨯⨯⨯⨯⨯⨯⨯,得:210m/s B v =;(2)当滑块恰好能到达最高点C 时,2Cv mg m R=;对滑块从B 到C 的过程中,由动能定理得:2211222C B W mg R mv mv -⨯=-, 带入数值得:=-5J W ,即克服摩擦力做的功为5J ;5.如图所示,一长度LAB=4.98m ,倾角θ=30°的光滑斜面AB 和一固定粗糙水平台BC 平滑连接,水平台长度LBC=0.4m ,离地面高度H=1.4m ,在C 处有一挡板,小物块与挡板碰撞后原速率反弹,下方有一半球体与水平台相切,整个轨道处于竖直平面内。
在斜面顶端A 处静止释放质量为m="2kg" 的小物块(可视为质点),忽略空气阻力,小物块与BC 间的动摩擦因素μ=0.1,g 取10m/s 2。
问:(1)小物块第一次与挡板碰撞前的速度大小;(2)小物块经过B 点多少次停下来,在BC 上运动的总路程为多少;(3)某一次小物块与挡板碰撞反弹后拿走挡板,最后小物块落在D 点,已知半球体半径r=0.75m,OD 与水平面夹角为α=53°,求小物块与挡板第几次碰撞后拿走挡板?(取)【答案】(1)7 m/s;(2)63次 24.9m(3)25次【解析】试题分析:小物块从开始运动到与挡板碰撞,重力、摩擦力做功,运用动能定理。
求小物块经过B 点多少次停下来,需要根据功能转化或动能定理求出小物块运动的路程,计算出经过B点多少次。
小物块经过平抛运动到达D点,可以求出平抛时的初速度,进而求出在BC段上运动的距离以及和当班碰撞的次数。
(1)从A到C段运用动能定理mgsin-L AB=mv2v=7m/s(2)从开始到最后停下在BC段所经过的路程为xmgsin L AB-mgx=0x=24.9m=31.1经过AB的次数为312+1=63次(3)设小物块平抛时的初速度为V0H -r=gt2r+=v 0tv0=3 m/s设第n次后取走挡板mv2-mv02=2L bc nn=25次考点:动能定理、平抛运动【名师点睛】解决本题的关键一是要会根据平抛运动的规律求出落到D时平抛运动的初速度;再一个容易出现错误的是在BC段运动的路程与经过B点次数的关系,需要认真确定。
根据功能关系求出在BC段运动的路程。
6.光滑水平面AB与一光滑半圆形轨道在B点相连,轨道位于竖直面内,其半径为R,一个质量为m的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B点进入半圆形轨道瞬间,对轨道的压力为其重力的9倍,之后向上运动经C点再落回到水平面,重力加速度为g.求:(1)弹簧弹力对物块做的功;(2)物块离开C点后,再落回到水平面上时距B点的距离;(3)再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为多少?【答案】(1)(2)4R(3)或【解析】【详解】(1)由动能定理得W=在B点由牛顿第二定律得:9mg-mg=m解得W=4mgR(2)设物块经C点落回到水平面上时距B点的距离为S,用时为t,由平抛规律知S=v c t2R=gt2从B到C由动能定理得联立知,S= 4 R(3)假设弹簧弹性势能为EP,要使物块在半圆轨道上运动时不脱离轨道,则物块可能在圆轨道的上升高度不超过半圆轨道的中点,则由机械能守恒定律知EP≤mgR若物块刚好通过C点,则物块从B到C由动能定理得物块在C点时mg=m则联立知:EP≥mgR.综上所述,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为EP≤mgR 或 EP≥mgR .7.如图所示,水平传送带长为L =4m ,以02m /s v =的速度逆时针转动。
一个质量为lkg 的物块从传送带左侧水平向右滑上传送带,一段时间后它滑离传送带。
已知二者之间的动摩擦因数0.2μ=,g =10m/s 2。
(1)要使物块能从传送带右侧滑离,则物块的初速度至少多大?(2)若物块的初速度为3m /s v '=,则物块在传送带上运动时因摩擦产生的热量为多少? 【答案】(1)4m/s v >;(2)12.5J 【解析】 【详解】(1)设物块初速度为v ,物块能从传送带右侧滑离,对其分析得:212k mgL E mv μ-=-0k E >解得:4m/s v >(2)物块在传送带上的运动是先向右减速运动,后向左加速运动。
物块向右减速运动时,有:1v t a '=21102mgx mv μ'-=-物块与传送带的相对滑动产生的热量:()1011Q mg v t x μ=+向左加速运动时,有:2v t a =22012mgx mv μ=物块与传送带的相对滑动产生的热量:()2022Q mg v t x μ=-1212.5J Q Q Q '=+=8.如图为一水平传送带装置的示意图.紧绷的传送带AB 始终保持 v 0=5m/s 的恒定速率运行,AB 间的距离L 为8m .将一质量m =1kg 的小物块轻轻放在传送带上距A 点2m 处的P 点,小物块随传送带运动到B 点后恰好能冲上光滑圆弧轨道的最高点N .小物块与传送带间的动摩擦因数μ=0.5,重力加速度g =10 m/s 2.求:(1)该圆轨道的半径r ;(2)要使小物块能第一次滑上圆形轨道达到M 点,M 点为圆轨道右半侧上的点,该点高出B 点0.25 m ,且小物块在圆形轨道上不脱离轨道,求小物块放上传送带时距离A 点的位置范围.【答案】(1)0.5r m =(2)77?.5,05?.5m x m x m ≤≤≤≤ 【解析】 【分析】 【详解】试题分析:(1)小物块在传送带上匀加速运动的加速度25/a g m s μ==小物块与传送带共速时,所用的时间01v t s a== 运动的位移02.52v x m a∆==<L -2=6m 故小物块与传送带达到相同速度后以05/v m s =的速度匀速运动到B ,然后冲上光滑圆弧轨道恰好到达N 点,故有:2Nv mg m r=由机械能守恒定律得22011(2)22N mv mg r mv =+,解得0.5r m = (2)设在距A 点x 1处将小物块轻放在传送带上,恰能到达圆心右侧的M 点,由能量守恒得:1()mg L x mgh μ-= 代入数据解得17.5?x m = 设在距A 点x 2处将小物块轻放在传送带上,恰能到达右侧圆心高度,由能量守恒得:2()mg L x mgR μ-=代入数据解得27?x m =则:能到达圆心右侧的M 点,物块放在传送带上距A 点的距离范围;同理,只要过最高点N 同样也能过圆心右侧的M 点,由(1)可知38 2.5 5.5?x m m m -== 则:0 5.5x m ≤≤.故小物块放在传送带上放在传送带上距A 点的距离范围:77?.505?.5m x m x m ≤≤≤≤和 考点:考查了相对运动,能量守恒定律的综合应用9.质量为M 的小车固定在地面上,质量为m 的小物体(可视为质点)以v 0的水平速度从小车一端滑上小车,小物体从小车另一端滑离小车时速度减为02v ,已知物块与小车之间的动摩擦因数为μ.求:(1)此过程中小物块和小车之间因摩擦产生的热Q 以及小车的长度L .(2)若把同一小车放在光滑的水平地面上,让这个物体仍以水平速度v 0从小车一端滑上小车.a. 欲使小物体能滑离小车,小车的质量M 和小物体质量m 应满足什么关系?b. 当M =4m 时,小物块和小车的最终速度分别是多少?【答案】(1)2038Q mv =,2038v L g μ=(2)a. M >3m ;b. 025v ,0320v 【解析】 【详解】(1) 小车固定在地面时,物体与小车间的滑动摩擦力为f mg μ=,物块滑离的过程由动能定理220011()222v fL m mv -=- ① 解得:2038v L gμ=物块相对小车滑行的位移为L ,摩擦力做负功使得系统生热,Q fL = 可得:2038Q mv =(2)a.把小车放在光滑水平地面上时,小物体与小车间的滑动摩擦力仍为f . 设小物体相对小车滑行距离为L '时,跟小车相对静止(未能滑离小车)共同速度为v , 由动量守恒定律:mv 0=(M +m )v ②设这过程小车向前滑行距离为s . 对小车运用动能定理有:212fs Mv =③ 对小物体运用动能定理有:22011()22f L s mv mv '-+=- ④联立②③④可得220011()()22mv fL mv M m M m'=-++ ⑤物块相对滑离需满足L L '>且2038fL mv = 联立可得:3M m >,即小物体能滑离小车的质量条件为3M m >b.当M =4m 时满足3M m >,则物块最终从小车右端滑离,设物块和车的速度分别为1v 、2v .由动量守恒:012mv mv Mv =+由能量守恒定律:222012111()222fL mv mv Mv =-+ 联立各式解得:1025v v =,20320v v =10.如图,质量为m=1kg 的小滑块(视为质点)在半径为R=0.4m 的1/4圆弧A 端由静止开始释放,它运动到B 点时速度为v=2m/s .当滑块经过B 后立即将圆弧轨道撤去.滑块在光滑水平面上运动一段距离后,通过换向轨道由C 点过渡到倾角为θ=37°、长s=1m 的斜面CD 上,CD 之间铺了一层匀质特殊材料,其与滑块间的动摩擦系数可在0≤μ≤1.5之间调节.斜面底部D 点与光滑地面平滑相连,地面上一根轻弹簧一端固定在O 点,自然状态下另一端恰好在D 点.认为滑块通过C 和D 前后速度大小不变,最大静摩擦力等于滑动摩擦力.取g=10m/s 2,sin37°=0.6,cos37°=0.8,不计空气阻力.(1)求滑块对B 点的压力大小以及在AB 上克服阻力所做的功; (2)若设置μ=0,求质点从C 运动到D 的时间; (3)若最终滑块停在D 点,求μ的取值范围. 【答案】(1)20N , 2J ;(2)13s ;(3)0.125≤μ<0.75或μ=1. 【解析】 【分析】(1)根据牛顿第二定律求出滑块在B 点所受的支持力,从而得出滑块对B 点的压力,根据动能定理求出AB 端克服阻力做功的大小.(2)若μ=0,根据牛顿第二定律求出加速度,结合位移时间公式求出C 到D 的时间. (3)最终滑块停在D 点有两种可能,一个是滑块恰好从C 下滑到D ,另一种是在斜面CD和水平面见多次反复运动,最终静止在D 点,结合动能定理进行求解.【详解】(1)滑块在B 点,受到重力和支持力,在B 点,根据牛顿第二定律有:F −mg =m 2v R, 代入数据解得:F=20N ,由牛顿第三定律得:F′=20N .从A 到B ,由动能定理得:mgR −W =12mv 2, 代入数据得:W=2J .(2)在CD 间运动,有:mgsinθ=ma ,加速度为:a=gsinθ=10×0.6m/s 2=6m/s 2,根据匀变速运动规律有:s =vt +12at 2 代入数据解得:t=13s . (3)最终滑块停在D 点有两种可能:a 、滑块恰好能从C 下滑到D .则有:mg sinθ•s −μ1mg cosθ•s =0−12mv 2, 代入数据得:μ1=1,b 、滑块在斜面CD 和水平地面间多次反复运动,最终静止于D 点.当滑块恰好能返回C 有:−μ1mg cosθ•2s =0−12mv 2, 代入数据得到:μ1=0.125,当滑块恰好能静止在斜面上,则有:mgsinθ=μ2mgcosθ,代入数据得到:μ2=0.75.所以,当0.125≤μ<0.75,滑块在CD 和水平地面间多次反复运动,最终静止于D 点. 综上所述,μ的取值范围是0.125≤μ<0.75或μ=1.【点睛】解决本题的关键理清滑块在整个过程中的运动规律,运用动力学知识和动能定理进行求解,涉及到时间问题时,优先考虑动力学知识求解.对于第三问,要考虑滑块停在D 点有两种可能.11.如图所示,一轻质弹簧左端固定在轻杆的A 点,右端与一质量1m kg =套在轻杆的小物块相连但不栓接,轻杆AC 部分粗糙糙,与小物块间动摩擦因数02 =.,CD 部分为一段光滑的竖直半圆轨道.小物块在外力作用下压缩弹簧至B 点由静止释放,小物块恰好运动到半圆轨道最高点D ,5BC m =,小物块刚经过C 点速度4v m s =/,g 取210/m s ,不计空气阻力,求:(1)半圆轨道的半径R ;(2)小物块刚经过C 点时对轨道的压力;(3)小物块在外力作用下压缩弹簧在B 点时,弹簧的弹性势能p E .【答案】⑴0.4m ⑵50N 方向垂直向下(3)18J【解析】【分析】【详解】(1)物块由C 点运动到D 点,根据机械能守恒定律2122mgR mv =R=0.4m ⑵小物块刚过C 点时F N -mg = m 2v R所以250N v F mg m N R=+= 根据牛顿第三定律知小物块刚经过C 点时对轨道的压力:50N F F N ==方向垂直向下(3)小物块由B 点运动到C 点过程中,根据动能定理212BC W mgL mv μ-=弹 带入数据解得:=18W J 弹 所以18p E J =.12.一束初速度不计的电子流在经U =5000V 的加速电压加速后在距两极板等距处垂直进入平行板间的匀强电场,如图所示,若板间距离d =1.0cm ,板长l =5.0cm ,电子电量e =191.610-⨯C ,那么(1)电子经过加速电场加速后的动能为多少?(2)要使电子能从平行板间飞出,两个极板上最多能加多大的电压?【答案】(1) 16810k E -=⨯J (2)要使电子能飞出,所加电压最大为400V【解析】【详解】(1)加速过程,由动能定理得:2012ls E eU mv ==① 解得:5000k E =eV 16810-=⨯J(2)在加速电压一定时,偏转电压U 越大,电子在极板间的偏转距离就越大当偏转电压大到使电子刚好擦着极板的边缘飞出,此时的偏转电压,即为题目要求的最大电压. 进入偏转电场,电子在平行于板面的方向上做匀速运动0l v t =② 在垂直于板面的方向上做匀加速直线运动,加速度:F eU a m dm'==③ 偏转距离212y at =④ 能飞出的条件为12y d ≤⑤ 解①~⑤式得:()()222222225000 1.0102 4.0105.010Ud U l --⨯⨯⨯'==⨯⨯ (V)即要使电子能飞出,所加电压最大为400V。