1、弹性力学的基本假设是什么?弹性力学的基本假设是:连续性、完全弹性、均匀性、各向同性、小变形假定。
2、简述什么是弹性力学?弹性力学与材料力学的主要区别?弹性力学又称为弹性理论,事固体力学的一个分支,其中研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变何位移。
弹性力学与材料力学的区别:从研究对象看;材料力学主要研究杆件,在拉压、剪、弯、扭转等作用下的应力、形变何位移。
弹性力学研究各种形状的弹性体,出杆件外,还研究平面体、空间体、平板和壳体等。
从研究方法看;弹性力学的研究方法是;在弹性体区域内必须严格地考虑静力学、几何学和物理学;而材料力学中虽然也考虑这几方面的条件,但不是十分严密。
3、如图所示悬臂梁,试写出其边界条件。
解:(1)x a =,1,00,0x y l m f f ==⎧⎪⎨==⎪⎩由()()()()x s xy s x y s xy s yl m f m l f στστ+=+=得()()0,0x xy s s στ==(2),y h =-0,10,x y l m f f q==-⎧⎪⎨==⎪⎩()()()()0(1)0(1)0x xy s s y xy ssqστστ⋅+⋅-=⋅-+⋅=则()(),0y xy s s q στ=-=(3),y h =+0,10,0x y l m f f ==+⎧⎪⎨==⎪⎩ ()()()()0(1)0(1)00x xy s s y xy ssστστ⋅+⋅+=⋅++⋅=得()()0,0y xy s s στ==(4)0,x =00s su v =⎧⎨=⎩4、已知下列位移,试求在坐标为(2,6,8)的P 点的应变状态()32103012-⨯+=x u ,31016-⨯=zy v ,()321046-⨯-=xy z w解:根据⎪⎭⎫ ⎝⎛∂∂+∂∂==∂∂=∂∂+∂∂==∂∂=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂==∂∂=z u x w zw z v y w y v x v y u x u zx zx z yz yz y xy xy x 2121,)(2121,2121,εγεεγεεγε 得到-34801201284410124496ij ε-⎡⎤⎢⎥=⨯⎢⎥⎢⎥-⎣⎦5、图示平面薄板,弹性模量E=200GPa ,泊松比v=0.3,求各应变分量()[]()[]()[]⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=+-=+-=yx z z x z y y z y x x v E v E v E σσσεσσσεσσσε111⎪⎪⎪⎩⎪⎪⎪⎨⎧===G G G zx zx yz yz xy xy τγτγτγ 得到100MPa50MPa41075.5-⨯=x ε,4104-⨯-=y ε, 41075.0-⨯-=z ε,0===yz xz xy γγγ6、下面给出平面应力问题(单连通域)的应力场,试分别判断它们是否为可能的应力场(不计体力)。
(10分)224331,,24x y xy x y y xy σστ=-=-=解:(1)将上式代入平衡微分方程:00xyx x yx y yf x y f x y τστσ∂⎧∂++=⎪∂∂⎪⎨∂∂⎪++=⎪∂∂⎩得22333300xy xy y y ⎧-+=⎪⎨-=⎪⎩满足。
(2)将上式代入相容方程:22431()24x y x y y σσ+=-+2222222()3330x y y x y x y σσ⎛⎫∂∂++=---≠ ⎪∂∂⎝⎭∴ 上式不是一组可能的应力场。
7、图示薄板,在y 方向受均匀拉力作用,证明在板中间突出部分的尖点A 处无应力存在。
(15分)解:在 AC 、AB 边界上无面力作用。
即0x y f f == AB 边界:111cos ,sin l m αα== 由应力边界条件公式,有()()()()x s xy s x y s xy s yl m m l f στστ+=+=1111cos sin 0sin cos 0x xy y xy ασατασατ+=+= (1)AC 边界:2222cos sin l m αα==-代入应力边界条件公式,有2222cos sin 0sin cos 0x xy y xy ασατασατ-=-+= (2)∵A 点同处于 AB 和 AC 的边界,∴满足式(1)和(2),解得0x y xy σστ===∴ A 点处无应力作用8、 已知某点的应力状态,求主应力和最大切应力, , , x y z a a a σσσ==-=0, 0, xy yz zx a τττ===-。
解: 321230I I I σσσ-+-=1x y z I a σσσ=++=2222222222x y y z z x xy yz zxI a a a a aσσσσσστττ=++--- =--+-=-22233320x y z xy yz zx x yz y zx z xyI a a σσστττστστστ=+--- =-+=32220a a σσσ--=(2)()0a a σσσ-+=1232, 0, a a σσσ===- 13max 322a σστ-==9. 设悬臂梁右端受向下的大小为P 的荷载作用,如取挠度曲线为23w ax bx =+,试用最小势能原理求a 、b 的值。
解:由23w ax bx =+得 223dw ax bx dx =+,2226d w a bx dx =+222012l d w U EJ dx dx ⎛⎫= ⎪⎝⎭⎰()21262lEJa bx dx =+⎰()22321412122EJ la l ab l b =++()()2323x lx lW PwP ax bx P al bl ====+=+U W ∏=-=()()2232231412122EJ la l ab l b P al bl ++-+由最小势能原理得0δ∏=,即()0U W δ-=得()()222334606120la l b EJ Pl a l a l b EJ Pl b δδδδ∏⎧=+-=⎪⎪⎨∏⎪=+-=⎪⎩⇒2232346612Pl la l b EJ Pl l a l b EJ ⎧+=⎪⎪⎨⎪+=⎪⎩解之得:26Pl a EJ P b EJ ⎧=⎪⎪⎨⎪=-⎪⎩10、已知应力分量312x C Qxy x +-=σ,2223xyC y -=σ,y x C y C xy 2332--=τ,体力不计,Q 为常数。
试利用平衡微分方程求系数C 1,C 2,C 3。
解:将所给应力分量代入平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy xxy y yxx τστσ 得⎩⎨⎧=--=--+-023033322322212xy C xy C x C y C x C Qy 即()()()⎩⎨⎧=+=+--0230333222231xy C C y C Q x C C 由x ,y 的任意性,得⎪⎩⎪⎨⎧=+=+=-023030332231C C C Q C C 由此解得,61Q C =,32Q C -=,23QC = 11、证明应力函数2by =ϕ能满足相容方程,并考察在如图所示的矩形板和坐标系中能解决什么问题(体力不计,0≠b )。
解:将应力函数2by =ϕ代入相容方程024422444=∂∂+∂∂∂+∂∂yy x x ϕϕϕ 可知,所给应力函数2by =ϕ能满足相容方程。
由于不计体力,对应的应力分量为b yx 222=∂∂=ϕσ,022=∂∂=x y ϕσ,02=∂∂∂-=y x xy ϕτ 对于图示的矩形板和坐标系,当板内发生上述应力时,根据边界条件,上下左右四个边上的面力分别为:上边,2hy -=,0=l ,1-=m ,0)(2=-=-=h y xy x f τ,0)(2=-=-=h y y y f σ;下边,2hy =,0=l ,1=m ,0)(2===h y xy x f τ,0)(2===h y y y f σ;左边,2lx -=,1-=l ,0=m ,b f l x x x 2)(2-=-=-=σ,0)(2=-=-=l x xy y f τ;右边,2lx =,1=l ,0=m ,b f l x x x 2)(2===σ,0)(2===l x xy y f τ。
可见,上下两边没有面力,而左右两边分别受有向左和向右的均布面力2b 。
因此,应力函数2by =ϕ能解决矩形板在x 方向受均布拉力(b >0)和均布压力(b <0)的问题。
12、如图所示的矩形截面的长坚柱,密度为ρ,在一边侧面上受均布剪力,试求应力分量。
解:根据结构的特点和受力情况,可以假定纵向纤维互不挤压,即设0=x σ。
由此可知022∂∂=yx ϕσ将上式对y 积分两次,可得如下应力函数表达式())()(,21x f y x f y x +=ϕ将上式代入应力函数所应满足的相容方程则可得0)()(424414+dx x f d dx x f d y 这是y 的线性方程,但相容方程要求它有无数多的解(全柱内的y 值都应该满足它),可见它的系数和自由项都应该等于零,即0)(414=dx x f d , 0)(424=dxx f d 这两个方程要求I Cx Bx Ax x f +++=231)(, K Jx Ex Dx x f +++=232)(代入应力函数表达式,并略去对应力分量无影响的一次项和常数项后,便得2323)(Ex Dx Cx Bx Ax y ++++=ϕ对应应力分量为022∂∂=yx ϕσgy E Dx B Ax y xy ρϕσ-+++=∂∂=26)26(22C Bx Ax yx xy ---=∂∂∂-=2322ϕτ以上常数可以根据边界条件确定。
左边,0=x ,1-=l ,0=m ,沿y 方向无面力,所以有0)(0==-=C x xy τ右边,b x =,1=l ,0=m ,沿y 方向的面力为q ,所以有q Bb Ab b x xy =--==23)(2τ上边,0=y ,0=l ,1-=m ,没有水平面力,这就要求xy τ在这部分边界上合成的主矢量和主矩均为零,即0)(00==⎰dx y bxyτ将xy τ的表达式代入,并考虑到C =0,则有0)23(2302302=--=--=--⎰Bb Ab Bx Ax dx Bx Ax b b而00)(00=⋅=⎰dx y b xy τ自然满足。
又由于在这部分边界上没有垂直面力,这就要求y σ在这部分边界上合成的主矢量和主矩均为零,即0)(00==⎰dx y by σ,0)(00==⎰x d x y byσ将y σ的表达式代入,则有02323)26(202=+=+=+⎰Eb Db Ex Dxdx E Dx b b022)26(230230=+=+=+⎰Eb Db Ex Dx xdx E Dx b b由此可得2b q A -=,b qB =,0=C ,0=D ,0=E 应力分量为0=x σ, gy b x b y q y ρσ-⎪⎭⎫ ⎝⎛-=312, ⎪⎭⎫ ⎝⎛-=23b x b x q xy τ虽然上述结果并不严格满足上端面处(y =0)的边界条件,但按照圣维南原理,在稍远离y =0处这一结果应是适用的。