当前位置:文档之家› 【精品】给水控制系统

【精品】给水控制系统

1引言随着发电机组容量的增大和参数的不断提高,机组的控制与运行管理变得越来越复杂和困难。

为了减轻运行人员的劳动强度,保证机组的安全运行,要求实现更为先进,适用范围更宽,功能更为完备的自动控制系统,这就产生了全程控制系统。

而给水控制系统在电厂运行中有着非常重要的作用。

在全程给谁控制系统中,汽包水位是汽包锅炉运行中一个重要的监控参数,它反应锅炉蒸汽负荷与给水量之间的平衡关系。

维持其包水位在一定范围内是保证锅炉和汽轮机安全运行的必要条件。

给谁全程控制系统是一个能在锅炉启动、停炉、低负荷以及在机组发生某些重大事故等各种不同的工况下,都能实现给水自动控制的系统而且从一种控制状态到另一种控制状态的判断、转换、故障检测也常常靠系统本身自动完成。

本次课程设计的要求是根据大型火电机组的生产实际设计出功能较为全面的300MW火电机组全程给水控制系统,该控制系统的设计任务是使给水量与锅炉的蒸发量相适应,维持其包水位在规定的范围内。

2设计内容2。

1设计方案2.1。

1方案一给系统设计如图一。

在这个方案中,低负荷时采用但冲量系统(PI1)高负荷时采用三冲量系统(PI2),而且都是通过改变调速泵转速来实现给水的调节。

为了保证给水泵工作在安全工作区内,设计了一个给水泵出口压力调节系统(PI3),通过改变阀门开度来改变泵的出口压力。

高压加热器出口分别取给水压力信号送入小值选择器。

当机组正常运行时,高压加热器出口的给水压力总是低于泵的出口压力。

这时,应选高压加热器出口给水压力作为压力测量值,使泵的实际工作点在泵下限特性曲线偏左一些,确保泵工作在安全工作区内。

当机组热态启动时,高压加热器出口的给水压力高于泵的出口压力,小组选件输出为泵出口压力,保证泵出口给水压力升压过程中,两个调节阀门均处于关闭状态,直到泵出口压力大于高压加热器出口给水压力时才按高压加热器出口的给水压力进行调节,控制两个阀门开度。

图一方案一系统示意图这个方案结构合理,经济性好,切换较简单,安全可靠性也较好,不足之处是压力调节系统和水位调节系统互相影响,同时两个系统切换动作频繁,使调节阀磨损较快.2。

1。

2方案二如图2所示。

这是一个一段调节的方案,在肌肤何时采用PI1单冲量系统,GH1值经大值选择器来控制调速泵,是泵维持在允许的最低转速.此时给水量是通过改变调节阀开度来调节的。

高负荷时,阀门开到最大,为了减小阻力,把并联的调节阀也开到最大,三冲量调节器PI2的输出大于GH1的值,故可直接改变调速泵转速控制给水量。

在冷态启动时,GH1起作用,既让泵工作在最低转速。

在热态启动时取决于Pd值,泵可以直接工作在较高的转速。

该方案中午专门设计泵的出口压力安全调节系统,解决给水泵在安全工作取得办法是利用调速泵运行的自然特性,即在定压运行使用两台泵同时给水地方法,使每台泵的负荷不超过86%,可使泵工作在安全区内。

图二方案系统示意图该方案结构最简单,系统和调节段两种切换相互错开,Pd是开换调节,调节段是无触点自由过度,安全性能好,是一个好方案。

2。

2总体设计典型的300MW机组给水热力系统如图3所示。

每台机组拍有一台50%容量的电动给水泵和两台均为50%容量的启动给水泵。

在机组启动阶段,由于需要的给水流量小,且没有稳定的汽源,汽动给水泵无法使用,故先用电动给水泵。

为满足机组启动过程中最小控制流量的需要,在电动泵出口至水母管之间装有两条并联的管路,一条支路上装有主给水截止阀,另一条之路上装有给水旁路截止阀和一只约15%容量的给水旁路调节阀.启动时通过给水旁路调节阀控制汽包水位,旁路阀接近全开时,打开主给水截止阀,调整电动给水泵的转速控制器包水位,电动给水泵转速通过液力耦合器调整.两台汽动给水泵由给水泵汽轮机驱动,给水泵汽轮机电液控制系统(MEH)接受锅炉给水控制系统的指令,独立完成汽动给水泵的转速控制任务.给水全程控制系统通常采用变结构控制,随负荷变化进行单冲量和三冲量控制方式的切换,同时,给水泵的运行方式以及控制作用方式也进行相应的切换。

需设计较为复杂的跟踪回路,以实现系统之间的勿扰切换。

通常的设计原则为:在单冲量调节器工作(低负荷)时,三充量调节器的主调跟踪给水流量信号,副调跟踪阀位信号;在三冲量调节器工作(高负荷)时,单冲量调节器跟踪阀位信号。

图三300MW 机组给水热力系统图2。

3详细设计汽包水位决定于汽包中的储水量和水面下的气泡容积。

因此凡是引起其保中储水量变化和水面下的气泡容积变化的各种因素都是给水控制对象的扰动,给水对象的主要扰动包括:给水流量扰动、蒸汽负荷扰动和炉膛热负荷扰动。

为了实现全程给水控制,需要设计的系统要克服以上的扰动。

2。

3。

1信号的测量部分锅炉从启动到正常运行或是从正常运行到停炉的过程中,蒸汽参数和负荷在很大的范围内变化,这就使水位、给水流量和蒸汽流量的测量准确性受到很大影响.为了实现全程给水自动控制,要求这些测量信号能够自动的进行温度、压力校正。

测量信号自动校正的基本方法是:先推导出被测参数随温度,压力变化的数学关系,然后利用各种功能模块进行运算,实现自动控制。

(1)汽包水位的测量和校正汽包锅炉通常利用压差原理来测量其水位,而锅炉从启、停到正常负荷的整个运行范围内,汽包内饱和蒸汽和饱和水密度随压力变化,这样就不能直接用压差信号来代表水位,需对测量信号进行压力校正.由单室平衡容器取样装置的水位测量原理可知:g)(g )(w s s a P L H ρρρρ-∆--=(1) 式中:P ∆为输入差压变送器的压差;w ρ为饱和水的密度;sρ为饱和蒸汽的密度;a ρ为汽包外平衡容器内水的密度;g 是重力加速度。

有上市可见,水位H 是差压和汽、水密度的函数。

密度a ρ与环境温度有关。

在锅炉启动过程中,水温略有升高,这两方面变化对a ρ的影响基本上可以抵消,既可以近似的认为a ρ是恒值.饱和水和饱和蒸汽的密度均为汽包压力的函数,在汽包压力小于19.6MPa 的范围内,(s a ρρ-)与汽包压力可近似为线性关系,而(s ρρ-w )与汽包压力为非线性关系。

这样水位表达式可写成:(2) 由以上校正原理,可设计汽包水位的测量部分如图四.为了提高测量的准确性,采用三路汽包水位测量信号分别经过压力补偿,采取“三取中"的方法。

选取中间值作为系统控制使用的汽包水位测量信号H 。

为防止变送器故障,将信号H 分别与三路补偿后的水位信号进行比较,如果偏差值超限,产生高低值报警的逻辑信号,使系统切手动,同时发出声光报警,待故障切除后,系统才正常工作。

图四汽包水位测量信号(2)蒸汽流量的测量和校正①采用标准节流装置测量过热蒸汽流量.这种设计的测量精度高,但当被测工质的压力、温度偏离设计值时,工质密度变化会造成流量测量误差,所以需进行压力、温度校正.蒸汽流量D 的校正公式如下:)(21b b b P f PP K K H ∆--=(3)式中:D 为过热蒸汽流量;p 为过热蒸汽压力;为过热蒸汽温度,△p 为节流件压差;为过热蒸汽密度;K 是流量系数。

②利用汽轮机调节级后压力或级组压力差测量主蒸汽流量。

采用节流装置测量蒸汽流量会造成一定的节流损失,降低机组的经济性,目前大容量火电机组多采用汽轮机调节级后压力或级组压力差测量主蒸汽流量。

采用汽轮机调节级后压力测量主蒸汽流量的基本理论公式是弗留格尔公式:11T p K D =(4) 式中:K 为当量比例系数,由汽机类型和设计工况确定;p1、T1为调节级后气压和汽温.该式成立的条件是:调节级后流通面积不变;在调节级后各通流部分的汽压均比例于蒸汽流量;在不同流量条件下,流动过程相同.实际汽轮机运行中不能完全满足上诉条件,同时不易直接测量调节级后汽温,即使测得也不能代表调节级后的平均气温,一次一般用主汽参数相关的量推算级后温度。

用压力机组前后压力测量主蒸汽流量的方法也是基于弗留格尔公式,其导出形式为:122211T p p K D -=(5)式中:2p 为第一压力级后的压力。

由于调节级后温度T1难以测量,可通过测量第一级抽汽温度T2推算T1,根据21T K T T = 则22221KT p p D -=(6)由以上校正原理可设计主蒸汽流量信号测量部分.如图五,主蒸汽流量信号的获取采用了两种方法:一种是采用汽轮机就调节级压力经住气温修正后形成主蒸汽流量D ;另一种方法是采用调节级压力和一级抽汽压力经主汽温度修正后形成主蒸汽流量D ,当高压旁路投入时,主蒸汽流量信号还要加上的旁路蒸汽流量。

图五主蒸汽流量测量信号(3)给水流量信号的测量和校正计算表明:当给水温度为100摄氏度时,压力在0.196~19.6MPa范围内变化时,给水流量的测量误差为0。

47%;压力19.6MPa不变,给水温度在100~290摄氏度范围内变化时,给水流量的测量误差为13%.也就是说,对给水流量的测量只需采取温度校正。

给水流量测量信号如图六。

省煤气前给水流量的测量值经给水温度修正后,汇总过热器一、二级减温器的喷水量和锅炉连续排污流量后,形成控制使用的给水流量测量信号W.图六给水流量测量信号2.3。

2单冲量控制方式在单冲量给水控制系统中,是一个只采用汽包水位信号和一个调节器的反馈控制系统。

系统中,水位信号经平衡容器转换成差压,再经差压变送器转换成电信号.当汽包水位发生变化时,如水位下降,则差压增加,电信号增大,调节器的输入偏差变大,经过控制器运算,产生的输出信号作用到执行机构,使阀门开度变大,给水流量增加,水位回升,差压减小,使调节器的输入变差减小.当偏差逐步消失时,调节器的输出不再变化,实现了无差调节。

单冲量给水控制系统结构简单,但对于内绕延迟大,外扰有明显虚假水位,存在一定的不足,在低负荷阶段,由于锅炉疏水和排污等因素的影响,使给水流量和蒸汽流量存在着严重的不平衡,且流量太小,测量误差较大,低负荷时的汽包压力低且虚假水位也不严重,在机组启、停及低负荷运行工况,采用单冲量控制。

单冲量控制系统如图七所示.通过单冲量调节器PI1控制给水旁路阀和电动泵。

给水旁路发及每台给水泵操作回路均配有手动/自动(M/A)操作站。

汽包水位测量值H与汽包水位设定值进行比较,其偏差经但冲凉调节器、切换器、比例器K2和M/A操作站去控制给水旁路调节阀,此时电动泵保持一定转速,以满足启动和低负荷下给水流量的需求。

当旁路调节阀开度大于95%时,自动打开主给水电动门,电动泵可进入自动方式运行。

此阶段仍采用单冲量控制方式,单冲量调节器PI1和M/A操作站控制电动给水泵转速,以维持其包水位,由于采用旁路阀水位控制系统与电动泵转速水位控制系统的执行机构不同,采用了不同的比例系数K1和K2。

图七单冲量控制方式2。

3.3串级三冲量控制方式本次设计中,在负荷大于30%时,采用串级三冲量控制方案,给系统有主、副两个调节器和三个冲量(汽包水位、蒸汽流量、给水流量)构成。

相关主题